Direct Detection of WIMP Dark Matter: Part 1 - a primer

Dan Akerib Case Western Reserve University CDMS Collaboration

> SLAC Summer Institute Aug 2, 2007

Standard Cosmology

Non-Baryonic Dark Matter

WIMPs in the Galactic Halo

SUSY Dark Matter: elastic scattering cross section

- The 'standard' progress plot
 - Direct-search experimental bounds
- Theory
 - Sample SUSY parameter space
 - Apply accelerator and model-specific particle physics constraints
 - Apply cosmological bound on relic density
 - ⇒ Extract allowed region for WIMP-nucleon cross-section versus WIMP mass

Broad theoretical landscape: much of it testable with next and next-next generation DM searches and/or next and nextnext generation accelerators

Ellis et. al Theory region post-LEP benchmark points Baltz and Gondolo 2003

Baltz and Gondolo, 2004, Markov Chain Monte Carlos

ххх

WIMPs in the Galactic Halo

- Exploit movements of Earth/ Sun through WIMP halo
 - Direction of recoil -- most events should be opposite Earth/Sun direction (Spergel 1988)
 - Annual modulation -- harder spectrum when Earth travels with sun (Drukier, Freese, & Spergel 1986)

Defining the Signal

- Kinematics
 - halo potential
 - WIMP mass
 - target mass & velocity
- Rate
 - halo density
 - cross section
 - SD/SI
 - coherence & form factors
- Primary signal
- Secondary features
 - annual modulation of rate
 - diurnal modulation of direction
- Backgrounds
- Experimental methods & results

References and further reading

- References and notation generally following the treatment of two key review articles:
 - J.D. Lewin and P.F. Smith, Astroparticle Physics 6 (1996)
 - G. Jungman, M. Kamionkowski and K. Griest, Physics Reports 267 (1996)
- A very nice pedagogic reference
 - S. Golwala, Ph.D. thesis, UC Berkeley (2000) (http://cdms.berkeley.edu)
 - 10th CDMS dissertation first astrophysics results!
 - winner of first APS Tanaka dissertation prize!
- See also
 - R.J. Gaitskell (experiment review) in Ann. Rev. Nucl. Part. Sci. 54 (2004)
 - G. Heusser (low background techniques) in Ann. Rev. Nucl. Part. Sci. 45 (1995)

Differential energy spectrum (simplified)

$$\frac{dR}{dE_R} = \frac{R_0}{E_0 r} e^{-E_R/E_0 r}$$

$$R =$$
 event rate per unit mass

$$E_R$$
 = recoil energy

$$R_0 = \text{total event rate}$$

$$R_{0} = \text{total event rate} \qquad \int_{0}^{\infty} \frac{dR}{dE_{R}} dE_{R} = R_{0}$$

$$E_{0} = \text{most probable incident} \qquad \int_{0}^{\infty} \frac{dR}{dE_{R}} dE_{R} = R_{0}$$

$$energy (Maxwellian)$$

$$r = \frac{4M_{W}M_{N}}{(M_{W} + M_{N})^{2}} \qquad \langle E_{R} \rangle = \int_{0}^{\infty} E_{R} \frac{dR}{dE_{R}} dE_{R}$$

$$M_{W} = \text{mass of WIMP} = E_{0}r$$

$$M_N = \text{mass of target nucleus}$$

WIMP search - c.1988

• Germanium ionization detector (UCSB/UCB/LBL)

Typical numbers

$$\beta \sim 0.75 \times 10^{-3} = 220 \, \mathrm{km/s}$$

$$\langle E_R \rangle = E_0 = \frac{1}{2} M_W \beta_0^2 c^2$$

= $\frac{1}{2} 100 \frac{\text{GeV}}{c^2} (0.75 \times 10^{-3})^2 c^2$
= 30 keV

Refinements

$$\frac{dR}{dE_R}\Big|_{OBS} = R_0 S(E_R) F^2(E_R) I$$

 $S(E_R)$ = spectral function — masses and kinematics $F^2(E_R)$ = form factor correction, with $E_R = q^2/2M_W$ I = interaction type

Kinematics

DM particle with velocity v and incident KE $E_i = \frac{1}{2}M_W v^2$ scattered at angle θ in CM frame gives recoil energy in lab frame θ $E_R = E_i r \, \frac{(1 - \cos \theta)}{2}$ $-\theta$ where $r = \frac{4m_r^2}{M_W M_N} = \frac{4M_W M_N}{(M_W + M_N)^2}$ and $m_r = \frac{M_W M_N}{M_{\text{m}} \perp M_{\text{m}}}$

is the reduced mass

Kinematics

Isotropic scattering: uniform in $\cos \theta$ Incident WIMP with energy E_i gives recoil energies uniformly in

$$E_R = 0 \to E_i r$$

Recall "familiar" case for equal masses (r = 1), target at rest, head-on collision

Kinematics

Need to integrate over range of incident energies

$$\frac{dR}{dE_R}(E_R) = \int_{E_{min}}^{E_{max}} \frac{dR(E_i)}{E_i r}$$

For E_{max} use ∞ or v_{esc} (later...)

For E_{min} , to get recoil of energy E_R need incident energy

$$E_i \ge \frac{E_R}{r} \equiv E_{min}$$

and also need differential rate...

Differential rate

In a kilogram of detector of nuclear mass number A

$$dR = \frac{N_0}{A} \,\sigma \, v \, dn$$

where the differential density dnis taken as a function v

$$dn = \frac{n_0}{k} f(\vec{v}, \vec{v}_E) \, d^3 \vec{v}$$

with $n_0 = \rho_{DM}/M_W$ and normalization

$$k = \int f \, d^3 \vec{v}$$

volume **o**v swept per unit time contains dn(v) particles with velocity v

Coordinate system

Differential rate

For simplified case of $v_E = 0$ and $v_{esc} = \infty$

$$dR = R_0 \frac{1}{2\pi v_0^4} v f(v, 0) d^3 v$$

with $R_0 = 2\pi^{-\frac{1}{2}} \frac{N_0}{A} \frac{\rho_{DM}}{M_W} \sigma_0 v_0$

For Maxwellian
$$f(v,0) = e^{-v^2/v_0^2}$$
,
isotropic $d^3v \to 4\pi v^2 dv$,
 $E_i = \frac{1}{2}M_W v^2$ and $E_0 = \frac{1}{2}M_W v_0^2$:

$$\frac{dR}{dE_R}(E_R) = \int_{\frac{E_R}{r}}^{\infty} \frac{dR(E_i)}{E_i r} = \frac{R_0}{r(\frac{1}{2}M_W v_0^2)^2} \int_{v_{min}}^{\infty} e^{-v^2/v_0^2} v \, dv$$
$$= \frac{R_0}{E_0 r} e^{-E_R/E_0 r} \qquad v_{min} = \sqrt{2E_R/rM_W}$$

Corrections: escape velocity

For finite v_{esc}

$$\frac{dR}{dE_R} = \frac{k_0}{k_1(v_{esc}, 0)} \frac{R_0}{E_0 r} \left(e^{-E_R/E_0 r} - e^{-v_{esc}^2/v_0^2} \right)$$

but $\frac{k_0}{k_1} = 0.9965$ for $v_{esc} = 600$ km/s,
and for $M_W = M_N = 100$ GeV/c²,
maximum $E_R = 200$ keV

$$\Rightarrow$$
 cutoff energy $\gg \langle E_R \rangle = 30 \,\mathrm{keV}$

Corrections: earth velocity

Clearly $\vec{v}_E \neq 0$ — but ~ $v_0 = 230 \,\mathrm{km/s}$. Full calculation yields:

$$\frac{dR(v_{esc}, v_E)}{dE_R} = \frac{k_0}{k_1} \frac{R_0}{E_0 r} \left(\frac{\sqrt{\pi}}{4} \frac{v_0}{v_E} \left[\operatorname{erf}\left(\frac{v_{min} + v_E}{v_0}\right) - \operatorname{erf}\left(\frac{v_{min} - v_E}{v_0}\right) \right] - e^{-v_{esc}^2/v_0^2} \right)$$

where
$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
, $v_{min} = v_0 \sqrt{E_R / E_0 r}$, $k_0 = (\pi v_0^2)^{\frac{3}{2}}$
and

$$k_{1} = k_{0} \left[\operatorname{erf}\left(\frac{v_{esc}}{v_{0}}\right) - \frac{2}{\sqrt{\pi}} \frac{v_{esc}}{v_{0}} - e^{-v_{esc}^{2}/v_{0}^{2}} \right]$$

Fortunately, average value well approximated by numerical fit

$$\frac{dR(v_{esc} = \infty, v_E)}{dE_R} = c_1 \frac{R_0}{E_0 r} e^{-c_2 E_R/E_0 r}$$

~30% increase in integrated rate = $c_1/c_2 = 0.751/0.561$ and harder spectrum

Signal modulations: annual effect

Signal modulations: recoil direction

• Differential angular spectrum:

$$\frac{d^2 R}{dE_R d(\cos\psi)} = \frac{1}{2} \frac{R_0}{E_0 r} e^{-(v_E \cos\psi - v_{min})^2 / v_0^2}$$

- Asymmetry \rightarrow more recoils in forward direction by 5x: ~10 events
- Orientation of lab frame rotates relative to forward direction
 - eg, definition of forward/backward in lab frame changes as earth rotates
 - ◆ ⊥ versus || reduces asymmetry to 20% effect: ~300 events

Refinements

$$\frac{dR}{dE_R}\Big|_{OBS} = R_0 S(E_R) F^2(E_R) I$$

 $\checkmark S(E_R) =$ spectral function — masses and kinematics time dependence

$$F^2(E_R) = \text{form factor correction, with } E_R = q^2/2M_W$$

$$I = \text{interaction type}$$

in zero-velocity limit (v<interactions dominate \rightarrow spin independent and
spin dependent couplings

Nuclear form factor and Spin Ind. interactions

- Scattering amplitude: Born approximation $\vec{q} = \hbar (\vec{k}' \vec{k})$
- Spin-independent scattering is coherent $\lambda = \hbar/q \sim \text{few fm}$

Nuclear form factor and Spin Ind. interactions

Loss of coherence as larger momentum transfer probes smaller scales

SI cross section

- Now have dependence on *q*² and nucleus → separate out fundamental WIMP-nucleon cross section
- Differential cross section can be written

 $\frac{d\sigma_{WN}(q)}{dq^2} = \frac{\sigma_{0WN} F^2(q)}{4m_r^2 v_{\star}^2} \qquad \text{rel. velocity in CM frame}$

where σ_{0WN} is total cross section for F = 1. From Fermi's Golden Rule

$$\frac{d\sigma_{WN}(q)}{dq^2} = \frac{1}{\pi v^2} |M|^2 = \frac{1}{\pi v^2} f_n^2 A^2 F^2(q)$$

• Can identify "unity-form-factor" cross sections:

$$\sigma_{0WN} = \frac{4m_r^2}{\pi} f_n^2 A^2 = \frac{4}{\pi} m_n^2 f_n^2 \frac{m_r^2}{m_n^2} A^2$$

$$\int_{\text{nucleus nucleon}} \sigma_{Wn}$$
all the particle physics, here
$$\int_{\text{SSI 2007}} \sigma_{Wn}$$
Case Western Reserve University

SI cross section and differential rate

• Putting this all together

$$\frac{d\sigma_{WN}(q)}{dq^2} = \frac{1}{4m_n^2 v^2} \,\sigma_{Wn} \,A^2 \,F^2(q)$$

• Recall

$$\frac{dR}{dE_R} = \int \frac{dR(E)}{Er} \qquad \text{(where } dR(E) \text{ contained } \sigma\text{)}$$

 The *Er* factor was from isotropic scattering - corresponds to the *v*² in the differential cross section. Including now the FF:

SI cross section and differential rate

Nuclear form factor and Spin Dep. interactions

- Scattering amplitude dominated by unpaired nucleon
 - paired nucleons 1 tend to cancel -- couple to net spin J

$$\frac{d\sigma}{dq^2} = \frac{8}{\pi v^2} \Lambda^2 G_F^2 J(J+1) F^2(q)$$

• Simplified model based on thin-shell valence nucleon

$$F(qr_n) = j_0(qr_n) = \frac{\sin(qr_n)}{qr_n}$$

- Better: detailed nucleus specific calcs.
 - average over odd-group nucleons
 - use measured nuclear magnetic moment

signal characteristics

- *A*² dependence
 - coherence loss
 - relative rates
- *M_W* relative to *M_N*
 - large *M*_W lose mass sensitivity
 - if ~100 GeV
- Present limits on rate
- Following a detection (!), many cross checks possible
 - A² (or J, if SD coupling)
 - WIMP mass if not too heavy
 - different targets
 - accelerator measurements
 - galactic origin
 - annual
 - diurnal/directional WIMP astronomy

Backgrounds: cosmic rays and natural radioactivity

WIMP scatters (< 1 evts /10 kg/ day) swamped by backgrounds (> 10⁶⁻⁷ evts/kg-d)

The Signal and Backgrounds

Nuclear-Recoil Discrimination

Nuclear recoils vs. electron recoils

Next: WIMP search experiments

Dan Akerib

Case Western Reserve University