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The Plan
• Yesterday:

Quick review of the Linear Power Spectrum and 
Growth of Fluctuations in the Linear Regime

Basics of Non-Linear Structure Formation; Spherical 
Collapse

Abundance of Dark Matter Halos (The “Mass Function”)

• Today:

• Growth, and Structure of Dark Matter Halos

• Dark Matter Substructure

• Clustering of Dark Matter, Halos, & Galaxies



via Lactea simulation, Diemand et al Millenium Simulation, Springel et al 



simulating the Universe
• choose a cosmological model (                        , dark matter, etc)

• choose a computational set up (box size, dynamic range, what physics 
to include)

• find the linear P(k) 

• set up a random or constrained realization of P(k) in the linear regime 
(200<z<30) in the chosen box

• find yourself a computer.  the bigger the better!

• follow the evolution of dark matter using particle N-body methods

• optionally, follow the evolution of the gas by numerically solving  
hydrodynamic equations

• optionally, add sink and source terms to hydro equations, modeling 
heating and cooling of the gas, star formation, etc.. (“subgrid physics”)

• evolve to the redshift of interest

Ωm,ΩΛ,Ωb, h, n

05









evolution of the 
matter power spectrum
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linear power spectrum

non-linear power spectrum

finite volume box; 
large modes have noise

largest scales are still in 
the linear regime

∆2(k) =
k3P (k)

2π2



evolution of dark matter clustering

• evolves rapidly with redshift

• 2PCF not a power law; has a feature at the scale 
of halos

• evolution is a strong function of matter density 
and dark energy

Colin et al 1999



halo formation in peaks

Gaussian 
fluctuations on 
various scales 

W. Hu

Peak-Background Split
• Schematic Picture:
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Peak-Background Split
• Schematic Picture:
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halo bias
• if halos are formed without regard to the underlying 

density, then

• but spherical collapse model indicates that the 
probability of forming a halo depends on the initial 
density field: large scale density acts as a background 
enhancement

• halos are “biased” tracers of the background dark 
matter field.  bias can be calculated from spherical 
collapse and the form of the mass function

δnh

nh

=

δρ

ρ

Halo Bias
• Halos are biased tracers of the “background” dark matter field with
a bias b(M) that is given by spherical collapse and the form of the

mass function

δnM

nM
= [1 + b(M)] δ

• For Press-Schechter

b(M) = 1 +
ν2 − 1

δc

• Improved by the Sheth-Torman mass function

b(M) = 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]

with a = 0.75 and p = 0.3 to match simulations.



halo bias
• the relative abundance of halos in dense regions 

compared to halos in the background is

• to first order, 

• for Press-Schechter mass function,

• improved by Sheth-Torman mass function

Perturbed Mass Function
• Density fluctuation split

δ = δb + δp

• Lowers the threshold for collapse

δcp = δc − δb

so that ν = δcp/σ

• Taylor expand number density nM ≡ dn/d ln M

nM +
dnM

dν

dν

dδb
δb . . . = nM

[
1 +

(ν2 − 1)

σν

]

if mass function is given by Press-Schechter

nM ∝ ν exp(−ν2/2)

Halo Bias
• Halos are biased tracers of the “background” dark matter field with
a bias b(M) that is given by spherical collapse and the form of the

mass function

δnM

nM
= [1 + b(M)] δ

• For Press-Schechter

b(M) = 1 +
ν2 − 1

δc

• Improved by the Sheth-Torman mass function

b(M) = 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]

with a = 0.75 and p = 0.3 to match simulations.

Halo Bias
• Halos are biased tracers of the “background” dark matter field with
a bias b(M) that is given by spherical collapse and the form of the

mass function

δnM

nM
= [1 + b(M)] δ

• For Press-Schechter

b(M) = 1 +
ν2 − 1

δc

• Improved by the Sheth-Torman mass function

b(M) = 1 +
aν2 − 1

δc
+

2p

δc[1 + (aν2)p]

with a = 0.75 and p = 0.3 to match simulations.
in general a given model should simultaneously give b(M) and n(M)
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halos in this mass range.

The quantity of interest is the relative over-abundance of halos in dense regions compared

to the mean abundance of halos,

δL
halo =

N (M |δ0, S0)

(dn(M)/dM)V0
− 1, (39)

where dn(M)/dM is the mean number density of halos in a mass range of width dM about

M from Eq. (34). The superscript L indicates that this is the overdensity in the initial

Lagrangian space determined by the mass distribution at some very early time, ignoring the

dynamical evolution of the overdense patch.

The relative overdensity of halos in large overdense and underdense patches is easy to

compute. In sufficiently large regions, S0 # S, δ0 # δc. Expanding Eq. (39) to first order

in the variables S0/S and δ0/δc gives a simple relation between halo abundance and dark

matter density (see also Refs. [37, 40])

δL
halo =

ν2 − 1

δc
δ0, (40)

where ν = δc/S1/2 = δc/σ(M) as before. The overdensity in the initial Lagrangian space is

proportional to the dark matter overdensity and is a function of halo mass through ν. The

final ingredient needed to relate the abundance of halos to the matter density is a model

for the dynamics that can map the initial Lagrangian volume to the final Eulerian space.

Let V and δ represent the Eulerian space variables corresponding to the Lagrangian space

variables V0 and δ0. The final halo abundance is

δhalo =
N (M |δ0, S0)

(dn(M)/dM)V
− 1. (41)

Mo & White [38] give an extensive discussion of the mapping from Lagrangian to Eule-

rian coordinates and use a spherical collapse model to determine the appropriate mapping

quantitatively. In the limit of a small overdensity δ0 # 1, V $ V0(1 + δ), δ $ δ0, and

δhalo =

(

1 +
ν2 − 1

δc

)

δ (42)

≡ bhδ. (43)
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dynamical evolution of the overdense patch.
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for the dynamics that can map the initial Lagrangian volume to the final Eulerian space.

Let V and δ represent the Eulerian space variables corresponding to the Lagrangian space

variables V0 and δ0. The final halo abundance is
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− 1. (41)
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rian coordinates and use a spherical collapse model to determine the appropriate mapping

quantitatively. In the limit of a small overdensity δ0 # 1, V $ V0(1 + δ), δ $ δ0, and
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halos in this mass range.

The quantity of interest is the relative over-abundance of halos in dense regions compared

to the mean abundance of halos,

δL
halo =

N (M |δ0, S0)

(dn(M)/dM)V0
− 1, (39)

where dn(M)/dM is the mean number density of halos in a mass range of width dM about

M from Eq. (34). The superscript L indicates that this is the overdensity in the initial

Lagrangian space determined by the mass distribution at some very early time, ignoring the

dynamical evolution of the overdense patch.

The relative overdensity of halos in large overdense and underdense patches is easy to

compute. In sufficiently large regions, S0 # S, δ0 # δc. Expanding Eq. (39) to first order

in the variables S0/S and δ0/δc gives a simple relation between halo abundance and dark

matter density (see also Refs. [37, 40])

δL
halo =

ν2 − 1

δc
δ0, (40)

where ν = δc/S1/2 = δc/σ(M) as before. The overdensity in the initial Lagrangian space is

proportional to the dark matter overdensity and is a function of halo mass through ν. The

final ingredient needed to relate the abundance of halos to the matter density is a model

for the dynamics that can map the initial Lagrangian volume to the final Eulerian space.

Let V and δ represent the Eulerian space variables corresponding to the Lagrangian space

variables V0 and δ0. The final halo abundance is

δhalo =
N (M |δ0, S0)

(dn(M)/dM)V
− 1. (41)

Mo & White [38] give an extensive discussion of the mapping from Lagrangian to Eule-

rian coordinates and use a spherical collapse model to determine the appropriate mapping

quantitatively. In the limit of a small overdensity δ0 # 1, V $ V0(1 + δ), δ $ δ0, and

δhalo =

(

1 +
ν2 − 1

δc

)

δ (42)

≡ bhδ. (43)

eg. Mo & White 1996
Sheth, Mo & Tormen 2001

Zentner 2007
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smoothing scale F (M ). Integra t ing E q. (15), this probability is

F (M ) =
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δc
P (δ; R)dδ =

1
2

erfc
(

ν√
2

)

, (16)

where erfc(x) is the complementary error funct ion, and ν ≡ δc/σ(M ) is the height of the

threshold in units of the standard devia t ion of the smoothed density distribut ion. In this

model, collapse of mass M is defined so tha t it occurs when the smoothed density fluctua t ion

is δc on the appropria te scale. T hus there is a typical scale tha t is collapsing a t the present

epoch, M" , when the variance is σ(M") = δc .

In the hierarchical power spectra tha t we consider, σ(R) becomes arbitrarily large as R

becomes arbitrarily small. T hus, F (0) in E q. (16) should give the fract ion of all mass in

virialized ob jects; however, erfc(0) = 1 so tha t E q. (16) states tha t only half of the mass

density of the universe is contained in virialized ob jects. Press & Schechter noted this as

a problem associa ted with not count ing underdense regions in the integral E q. (16). T hese

authors argued tha t underdense regions will collapse onto overdense regions and mult iplied

F (M ) in E q. (16) by a factor of two in order to account for all mass. T hough the sense

of this effect is certainly such tha t more mass will be contained in bound ob jects, tha t this

should lead to precisely a factor of two increase in F (M ) is far from convincing.

Proceeding with this ex tra factor of two, the number of virialized ob jects with masses

between M and M + dM is
dn
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dM =

ρM
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In terms of the mass variance, this is
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W ithout regard to the details of the shape of the power spectrum, σ(M ) or ν(M ), the mass

funct ion is close to a power law dn/dM ∝ M−2 for M % M" and is exponent ially cut-off

for M>∼ M" .

IV. EXCURSION SET THEORY OF THE MASS FUNCTION

A weakness of the Press-Schechter approach is tha t it does not account for the fact tha t

a t a part icular smoothing scale δ(&x; R) may be less than δc, yet it may be larger than δc

a, p fit to sims
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halo bias in simulations

see also
Mo & White 1996; Sheth & Tormen 1999, 

Sheth, Mo & Tormen 2001, etc.

Numerical Bias
• Example of halo bias from a simulation (from Hu & Kravstov 2002)

1014 1015

M180 (h–1 M  )

<
b

(M
)>

  
=

<
ξ h

m
/ξ

m
m

>

2

4

6

8

PS-based: MW96, J99

ST99

Hu & Kravtsov 2002
Seljak & Warren 2004

b>1 : bias
b<1: anti-bias

ξ
h
 = b2 ξ

DM



rms mass 
fluctuations, σ

mass scale 
M

δ∼1 for 
collapse

collapsed
early

collapsing
today

high peaks are rarer and more clustered
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smoothing scale F (M ). Integra t ing E q. (15), this probability is

F (M ) =
∫ ∞

δc
P (δ; R)dδ =

1
2

erfc
(

ν√
2

)

, (16)
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epoch, M" , when the variance is σ(M") = δc .

In the hierarchical power spectra tha t we consider, σ(R) becomes arbitrarily large as R

becomes arbitrarily small. T hus, F (0) in E q. (16) should give the fract ion of all mass in

virialized ob jects; however, erfc(0) = 1 so tha t E q. (16) states tha t only half of the mass

density of the universe is contained in virialized ob jects. Press & Schechter noted this as

a problem associa ted with not count ing underdense regions in the integral E q. (16). T hese

authors argued tha t underdense regions will collapse onto overdense regions and mult iplied

F (M ) in E q. (16) by a factor of two in order to account for all mass. T hough the sense

of this effect is certainly such tha t more mass will be contained in bound ob jects, tha t this

should lead to precisely a factor of two increase in F (M ) is far from convincing.

Proceeding with this ex tra factor of two, the number of virialized ob jects with masses

between M and M + dM is
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In terms of the mass variance, this is
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W ithout regard to the details of the shape of the power spectrum, σ(M ) or ν(M ), the mass

funct ion is close to a power law dn/dM ∝ M−2 for M % M" and is exponent ially cut-off

for M>∼ M" .

IV. EXCURSION SET THEORY OF THE MASS FUNCTION

A weakness of the Press-Schechter approach is tha t it does not account for the fact tha t

a t a part icular smoothing scale δ(&x; R) may be less than δc, yet it may be larger than δc
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smoothing scale F (M). Integrating Eq. (15), this probability is

F (M) =
∫ ∞

δc
P (δ; R)dδ =

1

2
erfc

(

ν√
2

)

, (16)

where erfc(x) is the complementary error function, and ν ≡ δc/σ(M) is the height of the

threshold in units of the standard deviation of the smoothed density distribution. In this

model, collapse of mass M is defined so that it occurs when the smoothed density fluctuation

is δc on the appropriate scale. Thus there is a typical scale that is collapsing at the present

epoch, M", when the variance is σ(M") = δc.

In the hierarchical power spectra that we consider, σ(R) becomes arbitrarily large as R

becomes arbitrarily small. Thus, F (0) in Eq. (16) should give the fraction of all mass in

virialized objects; however, erfc(0) = 1 so that Eq. (16) states that only half of the mass

density of the universe is contained in virialized objects. Press & Schechter noted this as

a problem associated with not counting underdense regions in the integral Eq. (16). These

authors argued that underdense regions will collapse onto overdense regions and multiplied

F (M) in Eq. (16) by a factor of two in order to account for all mass. Though the sense

of this effect is certainly such that more mass will be contained in bound objects, that this

should lead to precisely a factor of two increase in F (M) is far from convincing.

Proceeding with this extra factor of two, the number of virialized objects with masses

between M and M + dM is
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In terms of the mass variance, this is
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Without regard to the details of the shape of the power spectrum, σ(M) or ν(M), the mass

function is close to a power law dn/dM ∝ M−2 for M % M" and is exponentially cut-off

for M>∼ M".

IV. EXCURSION SET THEORY OF THE MASS FUNCTION

A weakness of the Press-Schechter approach is that it does not account for the fact that

at a particular smoothing scale δ(&x; R) may be less than δc, yet it may be larger than δc
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halo merger 
histories

• can extract merger histories 
from simulations

• or get merger histories 
analytically from “Extended Press-
Schechter”

• PS: mass functions

• EPS: predicts the probability of 
having a halo of mass M with 
progenitor M1.
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ac(M,z)

• formation time is related to 
the mass fluctuation 
spectrum.

• formation time is measured 
here as the time when it had 
a given accretion rate, but 
this is equivalent to a 
formation time defined as the 
time when FM = M*

}
RW et al 02

scatter is 
0.13 in log10ac 

rms mass 

mass 

δ∼1 
collapsed

early

collapsing
today

σ[M " (a)] = δc/D(a)



how is the mass accreted?

Lacey & Cole 1993

most mass 
accreted in halos
~ 10-30% of the 

host



Merger rate of DM halos

Gottloeber et al 2000

merger rate goes as (1+z)3



formation history
summary

• HSF implies small halos form first and merge into 
bigger halos

• halo merger rate declines with z.



halo density 
profiles

Navarro, Frenk & White 1996, 1997

Also:
Dubinsk 1991,

Moore et al 1999
Fukushige & Makino 1999

Klypin 2001
Bullock 2001

Jing & Suto 2001
Power et al 2003

Navarro et al 2004
Maccio et al 2006
Neto et al 2007...

dark matter halos in 
N-body simulations 
found to have a 
roughly ‘Universal’ 
density profile



• roughly self-similar form:

• convenient parameterization:

          Navarro, Frenk & White 1996, 1997(NFW)

• concentration parameter:

halo density profiles

* virial radius with respect to the background density; Δvir=337 at z=0

r/Rvir

ρ(
r) Rs

ρ~r-1
ρ~r-2

ρ~r-3

large radiussmall radius

note:  concentrations depend on 
definition of the density threshold 

used to define halos

ρ(r)

ρcrit

=
δc

(r/Rs)(1 + r/Rs)2

Mvir ≡

4π

3
∆virρbR

3
vir



halo rotation velocities
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log radius Navarro, Frenk & White 1996, 1997

Vc(r) = 4πGρsr
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rvmax
= 2.163rs



halo concentrations

cvir~1/(1+z)

68% intrinsic 
scatter in halo

population
}

Bullock et al 2001

4 Neto et al.

2.2.2 Halo boundary

Using the potential centre, we define the limiting radius rlim

of a halo by the radius that contains a specified density
contrast ρ(r) = ∆ ρcrit. This defines implicitly an associated
mass for the halo through

M =
4
3
π∆ ρcritr

3
lim. (2)

We note that this includes all the particles inside this spher-
ical volume, and not only the particles grouped by the FOF
or the SUBFIND algorithms.

The choice of ∆ varies in the literature, with some
authors using a fixed value, such as NFW, who adopted
∆ = 200, and others, such as B01, who choose a value moti-
vated by the spherical collapse model, where ∆ ∼ 178 Ω0.45

m

(for a flat universe), which gives ∆ = 95.4 at z = 0
for our adopted ΛCDM parameters (e.g. Lahav et al. 1991;
Eke, Cole, & Frenk 1996). The drawback of the latter choice
is its dependence on redshift and cosmological parameters.
We keep track of both definitions in our halo catalogue, but
will quote mainly values adopting ∆ = 200. When necessary,
we shall specify the choice by a subscript; e.g., M200 and r200

are the mass and radius of a halo adopting ∆ = 200; Mvir

and rvir correspond to adopting ∆ = 95.4. Unless otherwise
specified, quantities listed without subscript throughout the
paper assume ∆ = 200.

2.3 Halo selection

Dark matter haloes are dynamic structures, constantly ac-
creting material and often substantially out of virial equi-
librium. In these circumstances, haloes evolve quickly, so
that the parameters used to specify their properties change
rapidly and are thus ill-defined. Furthermore, in the case of
an ongoing major merger, even the definition of the halo
centre becomes ambiguous, so that the characterisation of a
system by spherically-averaged profiles is of little use. As we
shall see below, departures from equilibrium not only add
to the scatter in the correlations that we seek to establish,
but can also bias the resulting trends, unless care is taken
to identify and correct for the effect of these transient struc-
tures.

2.3.1 Relaxed and unrelaxed haloes

The equilibrium state of each halo is assessed by means of
three objective criteria:

i) Substructure mass fraction: We compute the mass
fraction in resolved substructures whose centres lie inside
rvir: fsub =

∑Nsub

i!=0
Msub,i/Mvir. Note that in this definition

fsub does not include the most massive substructure as this
is simply the bound component of the main halo.
ii) Centre of mass displacement: We define s, the nor-

malised offset between the centre of mass of the halo (com-
puted using all particles within rvir) and the potential cen-
tre, as s = |rc − rcm|/rvir (Thomas et al. 2001).
iii) Virial ratio: We compute 2T/|U |, where T is the total
kinetic energy of the halo particles within rvir and U their
gravitational self potential energy. To estimate U , we use a
random sample of 1000 particles when Ni ≥ 1000. We obtain
physical velocities with respect to the potential centre by

Figure 1. Images (top) and corresponding spherically averaged
density profiles (bottom) in four haloes of similar mass. The halo
shown in the lower right panel of each set satisfies all our se-
lection criteria and is, therefore, close to dynamical equilibrium.
Note that the NFW profile (solid line) provides an excellent fit to
this halo. The halo mass, concentration and the values of the three
quantities, fsub, s and 2T/|U | used in the selection are given in
the legend. The NFW fitting procedure, which here is performed
only over the indicated range rmin < r < rvir, is described in
Section 2.5. The remaining three haloes are excluded from our
relaxed sample as they fail at least one of the selection criteria.
The halo on the upper left has a large amount of substructure,
fsub > 0.1. The one in the upper right panel is undergoing a ma-
jor merger. Note that the merging partner does not contribute to
fsub, since its centre lies outside the virial radius, but some of its
associated material displaces the centre of mass of the system, re-
sulting in s > 0.07. The halo in the lower left panel satisfies these
two criteria, but has 2T/|U | > 1.35. The corresponding panels
in the lower plot show that these unrelaxed haloes have density
profiles that are clearly not well described by NFW profiles.

Neto et al 2007



concentration vs. 
formation time

scaled formation scalefactor
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cvir=c1aobs/ac

for all masses and redshifts

RW et al 02

z=0
z=1
z=2

scatter at a given mass
and redshift caused by scatter

in mass accretion histories
 

 correlated with galaxy type?



ac(M,z)

} scatter in cvir

simply inverting this plot gives you c(M,z) + scatter.
the same model for formation time based on M* applies. 

this means that we can understand how concentrations depend on the power spectrum

Wechsler
et al 02

cvir = K
a

ac

∼ 9(M/M∗)
−0.13

CDM Halo Structure 7

Figure 4. The median, 20 and 80 percentiles of the concentration,
c200, as a function of halo mass, M200. The symbols extending to
high masses show the results from the MS while the overlapping
set of solid and dotted lines extending to lower masses show the
results from a simulation with 9× higher mass resolution. Each
panel corresponds to a different radial range adopted for the fits.
Data for each simulation are shown for haloes with N > 1000
particles, corresponding to ∼ 1012h−1 M" in the MS. The dotted
line shows a power law, c ∝ M−1/10, and is the same in all panels.

The upper panel is for our relaxed halo sample, while the
lower panel show results for the complete sample, including
systems that do not meet our equilibrium criteria.

In both samples, the correlation between mass and con-
centration is well defined, but rather weak. A power-law fits
the median concentration as a function of mass fairly well;
we find:

c200 = 5.26
(

M200/10
14h−1 M"

)−0.10
, (4)

for relaxed haloes, and

c200 = 4.67
(

M200/10
14h−1 M"

)−0.11
(5)

for the complete halo sample.
Our power-law fit is in good agreement with the results

of M07, who find c200 ∼ 5.6 (M200/10
14h−1 M")−0.098 for

the average concentration of their sample of relaxed haloes.
These authors also report that concentrations are system-
atically lower when considering the full sample of haloes.
The small difference between our results and M07’s may
be due to variations between mean and median, as well as
on the different criteria used to construct the relaxed halo
sample. Nevertheless, the agreement in the exponent of the
power-law is remarkable, especially considering that these
authors explore a mass range different from ours, namely
2 × 109 < M200/h−1 M" < 2 × 1013. Combining these re-
sults with ours, we conclude that a single power law fits

the concentration-mass dependence for about six decades in

mass.

Over the mass range covered by our simulations the
concentration-mass dependence is in reasonable agreement
with the predictions of NFW and of ENS, as shown, re-

Figure 5. The dependence of the rms residual deviation, σfit,
about the best-fitting NFW density profile on the number of par-
ticles per halo and on halo concentration. The boxes show the
medians and the 25% and 75% centiles of the distribution, while
the whiskers show the 5% and 95% tails. The numbers along
the top of each panel indicate the number of haloes within each
bin. Top panels include all MS haloes with Nvir > 450 as no
other selection criteria have been applied. The upturn in σfit for
low-concentration relaxed haloes is due to the inclusion of haloes
with less than 10, 000 particles. This upturn disappears once the
N > 10, 000 criterion is imposed.

spectively, by the dotted and dashed lines in Fig. 6 2 . The
agreement, however, is not perfect, and both models appear
to underestimate somewhat the median concentration at the
low mass end.

At the high-mass end, where there is a hint that concen-
trations are approaching a constant value, the NFW model
does slightly better than ENS. This is because a constant
concentration for very massive objects is implicit in the
NFW model, but not in ENS nor in the model of B01, which
is shown by a dot-dashed line in Fig. 6. Both ENS and B01
predict a strong decline in concentration at the very high
mass end. For the parameters favoured by B01, the disagree-
ment for M > 1013.5h−1M" is dramatic, and cautions, as al-
ready pointed out by Zhao et al. (2003b), against using this
model for predicting the concentrations of massive haloes.

Finally, we note that M07 argue that the B01 model re-
produces their results better than ENS for haloes of mass a
few times 109h−1 M". However, the differences between the
two models only become appreciable below ∼ 1010h−1M",
which corresponds to only about 700 particles in their
highest-resolution simulation. Given (i) the large scatter in

2 These predictions use the original parameters in those papers
and have not been adjusted further, except for adopting the
power-spectrum “shape” parameter, Γ = 0.15, as the best match
to the power spectrum adopted for the MS.

Bullock et al 
2001 Neto et al 

2007



rms mass 
fluctuations, σ

mass scale 
M

δ∼1 for 
collapse

collapsed
early

collapsing
today

•low mass halos form early, when the universe was denser
•reducing mass fluctuations on galaxy scales (low σ8, tilt) 

reduces concentrations 



the inner slope
(“cuspy halo crisis”)



a diversity 
of inner 
slopes?



do baryons matter for profiles?
adiabatic contraction

cluster of galaxies galaxy

Dark matter halos contract, but the standard model 

overestimates the effect  (OG, Kravtsov, Klypin, Nagai 2004)

noticed previously by Barnes, Sellwood, and others (also 

Navarro/KITP)

Gas cooling: hierarchical structure formationGas cooling: hierarchical structure formation

Gnedin et al 2004



effect of baryons on
concentrations
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F. 6.— Mean concentration of radial distributions of main mass components as a function of halo mass. Shaded regions contain 68% of halos in a given mass
bin. Scatter in the concentration relation for the DMO simulation is comparable to that in the DMG NR simulation and is omitted for clarity. Error bars correspond
to the estimated error on the mean concentration in each bin. Left panel: the mean NFW concentration fit to the total (i.e., DM+gas+stars) mass distribution for
all three of our simulations as indicated at the bottom of the panel. Center panel: the mean NFW concentration fit to the dark matter distribution in all three
simulations. Right panel: the mean Burkert concentration fit to the gas density profiles in the DMG NR simulation.

P(k) =
∑

i, j fi f jPi j(k), where fi = Ωi/ΩM refers to the univer-
sal mass fraction in the ith matter component. The one-halo
contribution is given by

P1Hi j (k) =
1

ρiρ j

∫

dmm2 fi(m) f j(m)
dn

dm
λi(k;m)λ j(k;m), (5)

where ρi is the mean density in the ith matter component,
fi(m) is the average fraction of mass in halos of total mass
m residing in the ith component, dn/dm is the mass function
of halos, and λi(k;m) is the Fourier transform of the mean
density profile of the ith component in halos of total mass
m. For example, the profiles of dark matter halos are of-
ten modeled by NFW profiles, in which case, λi(k;m) is the
Fourier transform of the NFW density profile (e.g., given by
Scoccimarro et al. 2001) with a concentration parameter set
by some relation (e.g., Bullock et al. 2001). The two-halo
contribution to P(k) is

P2Hi j (k) =
1

ρiρ j
Plin(k)Bi(k)Bj(k), (6)

where

Bi(k) ≡

∫

dmmfi(m)
dn

dm
λi(k;m)bh(m), (7)

Plin(k) is the linear matter power spectrum, and bh(m) is the
mass-dependent halo bias.
Our primary aim in applying the halo model is to study the

qualitative features of the spectra from our simulations rather
than to provide a precise, quantitative description. There-
fore, we adopt the fitting forms for the mass function and
linear bias of dark matter halos provided by Sheth & Tormen
(1999), rather than any of several updated bias prescrip-
tions (e.g., Jenkins et al. 2001; Seljak & Warren 2004, see
Cooray & Sheth 2002 and Zentner 2006 recent reviews). This
choice guarantees that the two normalization relations

1

ρ

∫

dm
dn

dm
= 1 (8)

and
∫

dm
dn

dm

(

m

ρ

)

bh(m) = 1 (9)

are satisfied identically without making any further, and of-
ten arbitrary, choices about how these relations should be

enforced. As halos have a finite extent set by their virial
radii, the integrals in Eq. (7) should not extend over all mass
but should be limited to halos with virial radii smaller than
r ∼ k−1. This effect is known as halo exclusion. Though more
complex and accurate implementations of halo exclusion ex-
ist (e.g., Tinker et al. 2006), we use the model for halo exclu-
sion introduced by Zheng (2004). Briefly, we set the upper
bounds on the integrals in Eq. (6) to the halo mass that cor-
responds to a virial radius of rmax = 2πk

−1. Previous studies
have found this prescription to be useful for practical applica-
tions (e.g., Zheng 2004; Zehavi et al. 2004).
The last ingredients necessary to build a halo model of the

matter power spectrum are specifications of the density pro-
files that characterize the distribution of each matter compo-
nent within halos. We treat each of the cases of pure dark
matter, dark matter with non-radiative gas, and dark matter
with gas cooling and star formation slightly differently, with
prescriptions motivated by our set of simulations.
We model the dark matter halos in both the N-body and

non-radiative cases with the NFW density profile [Eq. (3)].
As in § 3.2.2, the concentrations of halos are different in each
case, and we include this effect in our implementation of the
halo model. In our modeling, it is necessary to extrapolate be-
yond the range of concentrations probed directly by our sim-
ulations. Partly motivated by the fact that we aim to represent
the features of our simulated spectra qualitatively, we adopt a
particular form of the analytic model for halo concentrations
introduced in Bullock et al. (2001). Similar to other authors
(e.g., Dolag et al. 2004; Kuhlen et al. 2005; Wechsler et al.
2006; Macció et al. 2006), we find that the relationship be-
tween concentration and mass in our simulations has a smaller
normalization and a slightly shallower slope than that of the
Bullock et al. (2001) model in its original form. We find that
the mean concentration as a function of mass in the DMO sim-
ulation is well described by the Bullock et al. (2001) model
with parameters F = 10−5 and K = 1.7. We stress that these
parameters are not the result of a formal fitting procedure and
defer further exploration of the concentration-mass relation to
future work.
The halos in our DMG NR simulation exhibit somewhat

higher concentrations than those in the DMO simulation. Over
the mass range measured in the simulation, we use the mea-
sured concentration-mass relation (e.g., Fig. 6) from the sim-

Rudd et al 2007



triaxial 
halos

Jing & Suto 2002



triaxial 
halos

• wide 
distribution of 
shape 
parameters, 
but all halos 
fairly triaxial 
and prolate

Jing & Suto 2002



halo shapes

• halos get rounder with time & further out in radius

• low mass halos are the most spherical

• early forming halos more spherical
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Allgood et al 2006

s = 0.54Mvir/M*-0.05



simulation by A. Kravtsov

massive 
host halo

dark matter substructure

galactic 
subhalo

simulation by B. Allgood

simulation by VIRGO 
consortium



Substructure

• The best evidence for a hierarchical structure 
formation

• The distribution and properties of substructure 
contains information about the entire hierarchy 
and history of merging galaxies

• This includes information about the properties 
and nature of dark matter

• Substructures in large halos are likely the host 
for galaxies0.9903
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substructure studies
only a decade old

“overmerging”

Summers, Davis & Evrard 1995

first serious substructure studies in 1998: 
Klypin et al 1998, Moore et al 1998, Ghigna et al 1998



mass 
variance

halo 
concentration

Warm Dark Matter

Zentner & Bullock 2002; 2003



resolving 
substructure
in simulations



CDM substructure may extend
over 18-20 orders of magnitude in mass
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M!1one of the first objects to form, at z~60.
smooth halo with a cuspy density profile.

earth (10-6) mass substructures, size of the solar 
system.

1015 of these inside the galactic halo

Diemand et al 2006

model: neutralino 
100 GeV DM

power spectrum cut 
off at ~0.6 Mpc

axion DM:  no cut off here(10-13)



self-similar substructure
(approximately)

Moore et al 1999



Abundance of Abundance of subhalossubhalos in a given haloin a given halo
is determined by competition between  accretion of new is determined by competition between  accretion of new subhalossubhalos

and disruption of old and disruption of old subhalossubhalos

disruption = loss of identity via merging with other halos ordisruption = loss of identity via merging with other halos or

significant mass loss due to tidal strippingsignificant mass loss due to tidal stripping

Formation of a galaxy-sized halo in LCDM, Mvir=3x1012h-1 Msun; Rvir=293h-1 kpc; 

!"#$

z = 10 z = 7 z = 5 z = 3

z = 2 z = 1 z = 0.5 z = 0

Rvir

slide credit: Kravtsov



time

what processes affect 
substructure?

Gnedin & Ostriker 1999; Gnedin, Ostriker, & Hernquist 2000; Taffoni et al. 2002; Taylor & 
Babul 2002; Zentner & Bullock 2003; Zentner et al. 2005a,2005bslide credit:Zentner



dynamical friction

• galaxies can loose orbital energy due to a 
gravitational drag force

FDF =
4πln(Λ)G2M2

satρ(r)

V 2
orb

[

erf(x) −
2X
√

π
exp(−X2)

]

Chandrasekar 1943



Tidal stripping of Tidal stripping of subhalossubhalos: three examples: three examples

distance

to the

host

tidal

force

Vmax

and

grav.

bound

mass

time 

mild mass losssevere

mass loss

severe

mass loss

Kravtsov, Gnedin & Klypin 2004

Vm = 

max of 

circ 

velocity 

curve

=(GM(<r)/r)1/2
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~ linear with halo mass



satellite number correlates with formation time and 
halo concentration

Zentner et al 2005; Wechsler et al 2006
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cold warm hot



n The amount of primordial power on scales relevant for galaxy formation is not well constrained λ < Mpc 
and scale-invariance is almost always assumed

Kaplinghat 2005

Suppression of small-scale power from dark matter produced through 
decays  (Feng et al. 2003; Cembranos et al. 2005).

Suppression of small-scale power via models of non-thermal, sterile 
neutrino dark matter (Abazajian 2005; Asaka et al. 2005). 

Warm Dark 
Matter

Decaying Dark 
Matter

Abazajian 2005

0.5 keV
2 keV

7 keV

Sterile νs

Warm Dark Matter has two effects:  

§ Suppression of Linear Power Spectrum due to free-streaming on scales with kηDM » 1.  
For WDM models λFS ∼ 3 hMpc-1(m/keV)-4/3

§ High densities limited by finite “Phase-Packing” because initial phase-space density is 
relatively low, Q ≡ ρ/〈v2〉3/2 ∼ 10-4 (Msun/pc3/km3s-3) ∼ 10-24 Qχ

slide credit:Zentner



fraction of mass in substructure depends on 
DM properties.



tidal streams in M31



observational signatures 
of DM substructure

• substructure mass function in clusters from lensing

• multiple-image strong lenses of quasars 

• abundance of dwarf satellite galaxies

• dynamical effects on galactic disks

• (future) annihilation signal from DM subhalos in the 
local group

• galaxy abundance in groups & clusters

slide credit: Kravtsov



Substructure Summary

• substructures are ubiquitous in CDM

• mass function of substructure is roughly self-similar.

• the number of substructures is a trade-off between 
accretion (the halo merging rate) and distruction (dynamical 
friction; tidal stripping)

• abundance & properties may constrain small scale power 
spectrum (inflation; DM physics), but much work is still 
needed.

• lensing & stellar structure may be ways of probing dark and 
disrupted substructures.
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3Eventually these patches become so
dense, relative to their surroundings,

that gravity takes over from expansion. 
The patches start to collapse.

COOKING UP A GALAXY

4As each patch collapses, it attains
equilibrium. The density, both of

ordinary and of dark matter, peaks at the
center and decreases toward the edge. 

5Dark matter, being unable to radiate,
retains this shape. But ordinary matter

emits radiation, collapses into a rotating
disk and begins to condense into stars. 

2At first, cosmic expansion overpowers
gravity. The fluid thins out. But patches

of higher density thin out more slowly than
other regions do.

1In the beginning, a primordial fluid—a
mixture of ordinary matter (blue) and

dark matter (red)—fills the universe. Its
density varies subtly from place to place.

7When two disks of similar size merge,
the stellar orbits become scrambled.

An elliptical galaxy results. Later a disk
may develop around the elliptical.

8The merger triggers new star formation
and feeds material into the central

black hole, generating an active galactic
nucleus, which can spew plasma jets.

6Protogalaxies interact, exerting
torques on one another and merging 

to form larger and larger bodies. (This step
overlaps with steps 4 and 5.)

THREE BASIC PROCESSES dictated how the
primordial soup congealed into galaxies:
the overall expansion of the universe in
the big bang, the force of gravity, and the
motion of particles and larger
constituents. The shifting balance
among these processes can explain why
galaxies became discrete, coherent
bodies rather than a uniform gas or a
horde of black holes. In this theory, small
bodies coalesce first and then glom
together to form larger objects. A crucial
ingredient is dark matter, which reaches
a different equilibrium than ordinary
matter. —G.K. and F.v.d.B.
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gas in density peaks shock heats to virial 
temperature, and then radiates and cools. 
expect to have a galaxy at the center of 
every density peak (halo) that is massive 
enough to allow cooling (~104 K).
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one minute galaxy formation 
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halo occupation of galactic halos 

Average 
number of 

galactic 
(sub)halos

Host halo mass

Kravtsov, Berlind, Wechsler, et al 2004

Nsub ∼ M

•a physically motivated way of 
characterizing non-linear bias of 
galaxies/subhalos

•no smoothing scale; naturally 
incorporates stochasticity, 
naturally brings about scale 
dependence



assume every galaxy lives in a subhalo.
how do they cluster?

data: Zehavi et al 2004 
SDSS, z=0
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The Halo Model

• Basic idea:

• assume that stuff (e.g.: mass, galaxies, 
quasars, gas) lives in dark matter halos.

• use knowledge of dark matter halo 
properties + relation of stuff to halos to 
determine the clustering properties of the 
stuff (e.g., non-linear power spectrum, 
galaxy clustering, etc...)

• or use clustering to constrain the relation



the halo occupation approach
• assume galaxies live in halos

• assume P(N|M) is just a function of M

The relation between the clustering of Dark 
Matter and any class 

of galaxies (luminosity, type, etc.) is fully 
defined by the 

Halo Occupation Distribution (HOD):

• The probability distribution P(N|M) that a 
halo of mass M containsN galaxies of that 

class.

• The relation between the spatial distributions 

of galaxies and DM within halos.

• The relation between the velocity 

distributions of galaxies and DM within halos.



Galaxy Formation

Gas cooling, Star formation, 
Feedback, Mergers, etc.

Cosmological Model

Ω, P(k), etc. + Gravity

Halo Occupation Distribution
P(N|M)

Spatial distribution within halos
Velocity distribution within halos

Dark Halo Population

n(M), ρ(r|M), ξ(r|M), v(r|M)

Galaxy clustering

slide credit:Berlind



How do we compute clustering statistics?

Correlation function
Small scales:  All pairs come from same halo.

                          1-halo term

1+ ξg
1h r( ) = 2πr2ng

2( )−1 dM
dn
dM0

∞

∫
N N −1( )

M

2
λ r M( )

Large scales:  Pairs come from separate halos.
                          2-halo term

bg = ng
−1 dM

dn
dM

N M
0

∞

∫ bh M( )

ξg r( ) = bg2ξm r( )

Berlind & Weinberg (2002)

slide credit:Berlind



The HOD contains information about galaxy formation physics

Dynamical friction
Tidal disruption

Baryon/DM fraction
Gas cooling

Star formation efficiency

DM halo merger statistics



can also use the halo model to calculate the 

slide credit:Hu



Summary


