Cosmic Neutrinos

Chris Quigg Fermilab quigg@fnal.gov

XXXV SLAC Summer Institute · Dark Matter · 10 August 2007

Neutrinos are abundant!

- Each second, some 10¹⁴ neutrinos made in the Sun pass through your body.
- Each second, about 10³ neutrinos made in Earth's atmosphere by cosmic rays pass through your body.
- Other neutrinos reach us from natural (radioactive decays of elements inside the Earth) and artificial (nuclear reactors, particle accelerators) sources.
- Inside your body are more than 10⁷ neutrino relics from the early universe.

 $u_i,\ ar{
u}_i$ number density now: 56 cm $^{-3}$, $\propto (1+z)^3$

Neutrinos in the electroweak theory

Neutrinos in the electroweak theory

Leptons are observed as free particles

Lepton	Mass	Lifetime
ν_e	< 2 eV	
e ⁻	0.510 998 918(44) MeV	$>$ 4.6 $ imes$ 10 26 y (90% CL)
$rac{ u_{\mu}}{\mu^{-}}$	< 0.19 MeV (90% CL) 105.658 369 2(94) MeV	$2.19703(4) imes 10^{-6}~{ m s}$
$ \frac{ \nu_{ au}}{ au^{-}} $	< 18.2 MeV (95% CL) 1776.90 \pm 0.20 MeV	$290.6 \pm 1.0 imes 10^{-15}$ s

All spin- $\frac{1}{2}$, pointlike (\lesssim few $\times 10^{-17}$ cm)

kinematically determined ν masses consistent with 0 (ν oscillations \Rightarrow nonzero, unequal masses)

Tritium β -decay spectrum

$${}^{3}\text{H} \rightarrow {}^{3}\text{He} e^{-} \bar{\nu}_{e}$$
: $Q \approx 18.57 \text{ keV}$

ν mass limits (*e*-associated)

KATRIN aims for $m_{\nu} \lesssim 0.2 \text{ eV}$

Chris Quigg (Fermilab)

Cosmic Neutrinos

2007 SLAC Summer Institute 8 / 56

Neutrino flavor change \rightsquigarrow neutrinos have mass

The essence of neutrino oscillations

If neutrinos of definite flavor $(\nu_e, \nu_\mu, \nu_\tau)$ are superpositions of different mass eigenstates (ν_1, ν_2, ν_3) the mass eigenstates evolve in time with different frequencies ... and so the superposition changes in time

Beam created as flavor u_{α} evolves into a flavor mixture

Suppose $\nu_{\alpha} = \nu_1 \cos \theta + \nu_2 \sin \theta$; $\nu_{\beta} = -\nu_1 \sin \theta + \nu_2 \cos \theta$:

After distance L, beam created as u_{α} with energy E has

$$P_{lpha
ightarrow eta} = \sin^2 2 heta \sin^2 \left(\Delta m^2 L/4E\right)$$

SuperK Atmospheric Neutrinos

MINOS ν_{μ} Deficit

Atmospheric Neutrino Summary

SuperK All-Sky Map in Neutrinos ($\nu e \rightarrow \nu e$)

 $4
ho
ightarrow {}^4 ext{He} + 2e^+ + 2
u_e + 25 \; ext{MeV}$

Solar neutrinos: measure three reaction rates [CC] Charged-current dissociation: sensitive to ν_e flux

$$\nu_e d \rightarrow e p p$$
 W-exchange

[NC] Neutral-current dissociation: sensitive to total ν flux $\nu_\ell d \rightarrow \nu_\ell \ p \ p \ Z$ -exchange

[ES] Elastic scattering: sensitive to $\approx \nu_e + \frac{1}{7}(\nu_\mu + \nu_\tau)$ flux

$$\begin{aligned} \sigma(\nu_{\mu,\tau}e \to \nu_{\mu,\tau}e) &= \frac{G_F^2 m_e E_\nu}{2\pi} \left[L_e^2 + R_e^2 / 3 \right] & Z\text{-exchange} \\ \sigma(\nu_e e \to \nu_e e) &= \frac{G_F^2 m_e E_\nu}{2\pi} \left[(L_e + 2)^2 + R_e^2 / 3 \right] & W + Z\text{-exchange} \\ L_\ell &= 2\sin^2 \theta_W - 1 \approx -\frac{1}{2}; \ R_\ell &= 2\sin^2 \theta_W \approx \frac{1}{2} \end{aligned}$$

15 / 56

Solar neutrino observations: SuperK & SNO Total flux agrees with solar model, but only 30% arrive as ν_e

Solar ν emerge as ν_2

Absolute scale of neutrino masses is not yet known

Expectations for relic neutrinos

Relate to Cosmic Microwave Background:

$$rac{dn_{\gamma}(T)}{d^3p} = rac{1}{(2\pi)^3} rac{1}{\exp{(p/T)} - 1} \; ,$$

p: relic momentum, *T*: photon temperature

$$n_{\gamma}(T) = \frac{1}{(2\pi)^3} \int d^3p \; \frac{1}{\exp(p/T) - 1} = \frac{2\zeta(3)}{\pi^2} \; T^3,$$

 $T_0 = (2.725 \pm 0.002) \; {
m K:} \; n_{\gamma 0} \equiv n_\gamma (T_0) pprox 410 \; {
m cm^{-3}}$

Expectations for relic neutrinos

u decoupled around 1 MeV (0.1 s), were not reheated by e^+e^- annihilation: $T_{\nu}/T = \left(\frac{4}{11}\right)^{1/3}$ (below m_e).

Expectations for relic neutrinos

In the present Universe,

$$n_{
u_i 0} = n_{
u_i^c 0} \equiv n_{
u_i}(T_{
u 0}) \approx 56 \ {
m cm}^{-3}$$

rms neutrino momentum:

$$\langle p_{\nu 0}^2 \rangle^{1 \over 2} \approx 3.597 \ T_{\nu 0} \approx 6.044 \times 10^{-4} \ {\rm eV}$$

not necessarily small on scale of m_{ν}

 $\sum_{i} m_{\nu_i}$

 $\Omega_{\nu}\,{\gtrsim}(1.2,2.2)\times10^{-3}$ for (normal, inverted) spectrum

$\sum_{i} m_{\nu_i}$: cosmological constraints

S. Dodelson, Fermilab–KEK ν School: http://nuss.fnal.gov

Quark & charged-lepton masses

If neutrinos have Dirac masses, u Yukawa couplings $\lesssim 10^{-11}$

Summary of ν mixing parameters

Define
$$\boldsymbol{\nu} = (\nu_1, \nu_2, \nu_3)$$
 $\boldsymbol{\ell}_{\mathsf{L}} = (\boldsymbol{e}_{\mathsf{L}}, \mu_{\mathsf{L}}, \tau_{\mathsf{L}})$
 $\mathcal{L}_{\mathsf{CC}}^{(q)} = -\frac{g}{\sqrt{2}} \, \bar{\boldsymbol{\nu}} \, \gamma^{\mu} \boldsymbol{\mathcal{V}}^{\dagger} \boldsymbol{\ell}_{\mathsf{L}} W^{+}_{\mu} + \text{ h.c.} ,$

 \mathcal{V} : ν mixing matrix

$$\mathcal{V} = \left(egin{array}{ccc} \mathcal{V}_{e1} & \mathcal{V}_{e2} & \mathcal{V}_{e3} \ \mathcal{V}_{\mu 1} & \mathcal{V}_{\mu 2} & \mathcal{V}_{\mu 3} \ \mathcal{V}_{\tau 1} & \mathcal{V}_{\tau 2} & \mathcal{V}_{ au 3} \end{array}
ight)$$

Convention: ν_1, ν_2 : solar pair, $m_1 < m_2$ ν_3 separated by Δm_{atm}^2 ; above or below? Experiment tells us ...

$$\begin{aligned} |\mathcal{V}| &= \begin{pmatrix} 0.79 - 0.88 & 0.47 - 0.61 & < 0.20 \\ 0.19 - 0.52 & 0.42 - 0.73 & 0.58 - 0.82 \\ 0.20 - 0.53 & 0.44 - 0.74 & 0.56 - 0.81 \end{pmatrix} \\ \mathcal{V} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ s_{ij} &= \sin \theta_{ij}, \ c_{ij} &= \cos \theta_{ij} \end{aligned}$$

 $\begin{array}{l} 30^{\circ} \lesssim \theta_{12} \lesssim 38^{\circ}: \text{ solar} \\ 35^{\circ} \lesssim \theta_{23} \lesssim 55^{\circ}: \text{ atm} \\ \theta_{13} \lesssim 10^{\circ} \end{array}$ CP phase δ unconstrained

Chris Quigg (Fermilab)

Cosmic Neutrinos

2007 SLAC Summer Institute 25 / 56

Neutrino Mixing (representative θ_{12}, θ_{23} values, $\theta_{13} = 10^{\circ}$)

е

Quark Mixing (Components: $|V_{u\alpha}|^2$, etc.)

Neutrino Mixing (θ_{12}, θ_{23} variations, $\theta_{13} = 10^{\circ}$)

е

Neutrino Mixing (θ_{12}, θ_{23} fixed, δ variations, $\theta_{13} = 10^{\circ}$)

е

Varieties of neutrino mass: Dirac mass

Chiral decomposition of Dirac spinor:

$$\psi = \frac{1}{2}(1-\gamma_5)\psi + \frac{1}{2}(1+\gamma_5)\psi \equiv \psi_{\mathsf{L}} + \psi_{\mathsf{R}}$$

Dirac mass connects LH, RH components of same field

$$\mathcal{L}_D = -D(\bar{\psi}_{\mathsf{L}}\psi_{\mathsf{R}} + \bar{\psi}_{\mathsf{R}}\psi_{\mathsf{L}}) = -D\bar{\psi}\psi$$

 \implies mass eigenstate $\psi = \psi_{\rm L} + \psi_{\rm R}$

(invariant under global phase rotation $\nu \rightarrow e^{i\theta}\nu$, $\ell \rightarrow e^{i\theta}\ell$, so that lepton number is conserved) Varieties of neutrino mass: Dirac mass

Add RH neutrino $N_{\rm R}$ to the standard-model spectrum $N_{\rm R}$: SU(2)_L singlet with Y = 0, so sterile

$$\begin{split} \mathcal{L}_{\mathrm{D}}^{(\nu)} &= -\zeta_{\nu} \left[(\bar{\mathsf{L}}_{\ell} \bar{\phi}) \mathsf{N}_{\mathrm{R}} + \bar{\mathsf{N}}_{\mathrm{R}} (\bar{\phi}^{\dagger} \mathsf{L}_{\ell}) \right] \rightarrow -m_{\mathrm{D}} \left(\bar{\nu}_{\mathrm{L}} \mathsf{N}_{\mathrm{R}} + \bar{\mathsf{N}}_{\mathrm{R}} \nu_{\mathrm{L}} \right) \\ m_{\mathrm{D}} &= \zeta_{\nu} \mathsf{v} / \sqrt{2} \end{split}$$

Some argue that $\zeta_{\nu} \lesssim 10^{-11}$ is unnatural, while the range $\zeta_t \approx 1$ to $\zeta_e \approx \text{few} \times 10^{-6}$ is only puzzling. But all Dirac masses involve physics beyond the standard model.

Varieties of neutrino mass: Majorana mass

Neutrinos: no color, no Q: their own antiparticles? Majorana fermions

Charge conjugate of RH field is LH: $\psi_{L}^{c} \equiv (\psi^{c})_{L} = (\psi_{R})^{c}$ Majorana joins LH, RH components of *conjugate fields*

$$\begin{aligned} -\mathcal{L}_{\mathsf{M}\mathsf{A}} &= A(\bar{\nu}_{\mathsf{R}}^{c}\nu_{\mathsf{L}} + \bar{\nu}_{\mathsf{L}}\nu_{\mathsf{R}}^{c}) = A\bar{\chi}\chi \\ -\mathcal{L}_{\mathsf{M}\mathsf{B}} &= B(\bar{\nu}_{\mathsf{L}}^{c}\nu_{\mathsf{R}} + \bar{\nu}_{\mathsf{R}}\nu_{\mathsf{L}}^{c}) = B\bar{\omega}\omega \end{aligned}$$

for which the mass eigenstates are

$$\chi \equiv \nu_{\rm L} + \nu_{\rm R}^{\rm c} = \chi^{\rm c} = \nu_{\rm L} + (\nu_{\rm L})^{\rm c}$$
$$\omega \equiv \nu_{\rm R} + \nu_{\rm L}^{\rm c} = \omega^{\rm c} = \nu_{\rm R} + (\nu_{\rm R})^{\rm c}$$

Lepton number violation

Majorana ν : no conserved additive quantum number

 \mathcal{L}_M violates lepton number by two units

 \Rightarrow Majorana ν can mediate $\beta\beta_{0\nu}$ decays

$$(Z,A)
ightarrow (Z+2,A) + e^- + e^-$$

Detecting $\beta\beta_{0\nu}$ would offer decisive evidence for Majorana nature of ν

Active $\nu_{\rm L}$ mass generated by I = 1 Higgs with vev or effective operator containing two $I = \frac{1}{2}$ Higgs combined to transform as I = 1.

Neutrino observatories: expectations

Cosmic ν flux may exceed atmospheric background at $E_{\nu} \approx$ few TeV prospect for sources \cdot characterize sources \cdot study ν properties Sources include AGN (at $\sim 10^2$ Mpc) 1 Mpc $\approx 3.1 \times 10^{22}$ m pp or $p\gamma \Rightarrow \approx$ numbers of $\pi^+ \pi^0 \pi^ \pi^+ + \pi^0 + \pi^- \Rightarrow 2\gamma + 2\nu_{\mu} + 2\overline{\nu}_{\mu} + 1\nu_e + 1\overline{\nu}_e$

$$\Phi_{\rm std}^{0} = \{\varphi_{e}^{0} = \frac{1}{3}, \varphi_{\mu}^{0} = \frac{2}{3}, \varphi_{\tau}^{0} = 0\} \quad (\nu = \bar{\nu})$$

Detection (in volumes $\rightarrow 1 \text{ km}^3$)

$$(
u_{\mu},ar{
u}_{\mu})$$
 $oldsymbol{N}
ightarrow (\mu^{-},\mu^{+})+$ anything

Can we achieve efficient, calibrated $(\nu_e, \bar{\nu}_e)$ detection? Good $(\nu_\tau, \bar{\nu}_\tau)$ detection, NC capability desirable $u_{\mu} N \rightarrow \mu^{-} + anything$

$$\frac{d^2\sigma}{dxdy} = \frac{2G_F^2 M E_{\nu}}{\pi} \left(\frac{M_W^2}{Q^2 + M_W^2}\right)^2 \left[xq(x, Q^2) + x\bar{q}(x, Q^2)(1-y)^2\right]$$

$$q(x,Q^2) = \frac{u_v(x,Q^2) + d_v(x,Q^2)}{2} + \frac{u_s(x,Q^2) + d_s(x,Q^2)}{2} + s_s(x,Q^2) + b_s(x,Q^2)$$

$$ar{q}(x,Q^2) = rac{u_s(x,Q^2) + d_s(x,Q^2)}{2} + c_s(x,Q^2) + t_s(x,Q^2),$$

... isoscalar nucleon

 $x=Q^2/2M
u$ $y\equiv
u/E_{
u}$ $u\equiv E_{
u}-E_{\mu}$

M. H. Reno

$\nu N \rightarrow \mu + \dots$ Interaction Lengths


```
\nu e cross sections . . .
```


At low energies: $\sigma(\bar{\nu}_e e \rightarrow \text{hadrons}) > \sigma(\nu_\mu e \rightarrow \mu \nu_e) > \sigma(\nu_e e \rightarrow \nu_e e) > \sigma(\bar{\nu}_e e \rightarrow \bar{\nu}_\mu \mu) > \sigma(\bar{\nu}_e e \rightarrow \bar{\nu}_e e) > \sigma(\nu_\mu e \rightarrow \nu_\mu e) > \sigma(\bar{\nu}_\mu e \rightarrow \bar{\nu}_\mu e)$

Influence of neutrino oscillations

Flux at Earth $\Phi = \{\varphi_e, \varphi_\mu, \varphi_\tau\} \neq \Phi^0 = \{\varphi_e^0, \varphi_\mu^0, \varphi_\tau^0\}$ source fluxes Vacuum oscillation length is short; for $|\Delta m^2| = 10^{-5} \text{ eV}^2$,

$$L_{
m osc}~=~4\pi E_
u/|\Delta m^2|pprox 2.5 imes 10^{-24}~{
m Mpc}\cdot(E_
u/1~{
m eV})$$

...a fraction of Mpc even for $E_{
u}=10^{20}$ eV

 ν oscillate many times between cosmic source and terrestrial detector

Also, over long paths, cosmic neutrinos are vulnerable to decay processes that would not affect terrestrial or solar experiments.

... Neutrino Oscillations

(flavor) $\nu_{\alpha} = \sum_{i} \mathcal{V}_{\alpha i} \nu_{i}$ (mass) Idealize $\sin \theta_{13} = 0$, $\sin 2\theta_{23} = 1$, write $x = \sin^{2} \theta_{12} \cos^{2} \theta_{12}$.

$$\mathcal{V}_{\mathsf{ideal}} = \begin{pmatrix} c_{12} & s_{12} & 0\\ -s_{12}/\sqrt{2} & c_{12}/\sqrt{2} & 1/\sqrt{2}\\ s_{12}/\sqrt{2} & -c_{12}/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

Transfer matrix \mathcal{X} : Φ^0 (source) $\rightarrow \Phi$ (detector); Over many oscillations,

$$\mathcal{X}_{\text{ideal}} = \begin{pmatrix} 1-2x & x & x \\ x & \frac{1}{2}(1-x) & \frac{1}{2}(1-x) \\ x & \frac{1}{2}(1-x) & \frac{1}{2}(1-x) \end{pmatrix}$$
$$\mathcal{X}_{\text{ideal}} : \Phi_{\text{std}}^{0} \to \{\varphi_{e} = \frac{1}{3}, \varphi_{\mu} = \frac{1}{3}, \varphi_{\tau} = \frac{1}{3}\}$$

With current constraints

After current generation

Reconstructing the ν Mixture at the Source

 ν_{μ}, ν_{τ} fully mixed \Rightarrow can't fully characterize Φ^0 Reconstruct ν_e fraction at source using \mathcal{X}_{ideal} : $\varphi_e^0 = (\varphi_e - x)/(1 - 3x)$ 1.0 0.9 0.8 0.7-0.6 -°_0.5 0.4 0.3 -0.2 0.1-0.0 0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 08 09 10 Φe

Extreme φ_e implicates unconventional physics

Chris Quigg (Fermilab)

2007 SLAC Summer Institute 43 / 56

Influence of neutrino decays

Nonradiative decays $\nu_i \rightarrow (\nu_j, \bar{\nu}_j) + X$ not very constrained:

 $au/m\!\gtrsim\!10^{-4}~{
m s/eV}$

If only lightest neutrino survives, flavor mix at Earth is independent of composition at source

Normal hierarchy $m_1 < m_2 < m_3$: $\varphi_{\alpha} = |U_{\alpha 1}|^2$ $\Phi_{\text{normal}} \approx \{0.70, 0.17, 0.13\}$ Inverted hierarchy $m_1 > m_2 > m_3$: $\varphi_{\alpha} = |U_{\alpha 3}|^2$ $\Phi_{\text{inverted}} \approx \{0, 0.5, 0.5\}$

far from
$$\Phi_{\text{std}}=\{\frac{1}{3},\frac{1}{3},\frac{1}{3}\}$$

Energy-dependent composition as marker of ν decays

Energy-dependent composition as marker of ν decays

UHE ν annihilation on ν relics

Fable: I-o-o-o-o-n-g path (10^4 or 10^5 Mpc) in current U

Flavor ratios probe the mass hierarchy

Incorporate evolution of U back to z = 20

Flavor ratios probe the mass hierarchy($z \leq 20$)

Relic neutrinos are moving targets ...

Incorporate evolution of U back to z = 20, Fermi motion

Flavor ratios probe mass hierarchy($z \leq 20$, Fermi motion)

Dark Matter: The Contest

What should be the theme of SSI 2010?

Propose a title and give a two-sentence description to appear on the SSI 2010 web page.

Justify your choice in one tightly reasoned paragraph.

Winners receive valuable prizes and untold glory

Deadline for entries: 17h00 Thursday

Award ceremony: Friday morning