XXXV SLAC SUMMER INSTITUTE July 30 - August 10, 2007 Stanford Linear Accelerator Center

Dark Matter FROM THE COSMOS TO THE LABORATORY

Supersymmetry at the Tevatron

Marc Hohlfeld

Rheinische Friedrich–Wilhelms–Universität Bonn on behalf of the CDF and DØ experiments

Outline

- Introduction
- Tevatron collider and detectors
- Physics at the Tevatron
- Search for Supersymmetry
 - ▲ Direct searches
 - Search for supersymmetric Higgs bosons
 - Search for Charginos and Neutralinos
 - Search for Squarks and Gluinos
 - Search for long lived particles
 - ▲ Indirect searches
 - Search for $B_s \rightarrow \mu \mu$
- Summary and outlook

Particle Content

Particles in the Minimal Supersymmetric Model (MSSM)

R–parity = +1			R–pa	R–parity = –1			R–parity = –1		
Particle	Sýmbol	Spin	Particle	Śymbol	Spin	Particle	Sýmbol	Spin	
Lepton	ℓ	$\frac{1}{2}$	Slepton	$ ilde{\ell}_{ m L}, ilde{\ell}_{ m R}$	0				
Neutrino	ν	$\frac{\overline{1}}{2}$	Sneutrino	$ ilde{ u}$	0				
Quark	q	$\frac{\overline{1}}{2}$	Squark	$\tilde{q}_{\rm L}, \tilde{q}_{\rm R}$	0				
Gluon	g	1	Gluino	ĝ	$\frac{1}{2}$				
Photon	γ	1	Photino	$ ilde{\gamma}$	$\frac{\overline{1}}{2}$				
Z Boson	Z	1	Zino	$ ilde{ ext{Z}}$	$\frac{\overline{1}}{2}$				
W Boson	W^{\pm}	1	Wino	$ ilde{W}^{\pm}$	$\frac{1}{2}$	4 Neutralinos	$ ilde{\chi}_{ ext{i}}^{0}$	$\frac{1}{2}$	
Higgs	$\mathrm{H}^{0},\mathrm{H}^{\pm}$	0	Higgsino	$\tilde{\mathrm{H}}_{1}^{0}, \tilde{\mathrm{H}}_{2}^{+}$	$\frac{1}{2}$	2 Charginos	$ ilde{\chi}^{\pm}_{\mathrm{i}}$	$\frac{1}{2}$	
	h^0, A^0	0		$\tilde{\mathrm{H}}_{1}^{-}, \tilde{\mathrm{H}}_{2}^{0}$	$\frac{1}{2}$				

• Assumptions in this talk

- ▲ Consider mSUGRA model
 - ► Relevant parameters: $\tan \beta$, m_0 , $m_{1/2}$, A_0 , sign(μ)
- ▲ R-parity is conserved \Rightarrow LSP (Neutralino) is stable

SLAC Summer Institute, 08/02/2007

Tevatron Parameters

- $p\bar{p}$ collisions at center of mass energy of \sqrt{s} = 1.96 TeV

	Run I	Run IIa Run IIb	
$\sqrt{\mathrm{s}}$ (TeV)	1.8	1.96	1.96
Bunches	6×6	36×36	36×36
Bunch spacing (ns)	3500	396	396
$\frac{\text{Luminosity}}{(\text{cm}^{-2}\text{s}^{-1})}$	$1.6 \cdot 10^{30}$	$9 \cdot 10^{31}$	$3 \cdot 10^{32}$

Tevatron Performance

- Tevatron coming close to design luminosity for Run IIb
 - ▲ Improved antiproton stacking rate
 - A Peak luminosity $\sim 300 \cdot 10^{30} \text{ cm}^{-2} \text{s}^{-1}$
- Integrated luminosity of 7–8 ${\rm fb}^{-1}$ by end of 2009 realistic projection

SLAC Summer Institute, 08/02/2007

The Detectors

The Detectors (cont'd)

SLAC Summer Institute. 08/02/2007

Marc Hohlfeld

universität**bonn**

Physics at the Tevatron

• Physics at the Tevatron is characterized by

- ▲ High center-of-mass energy of the collider
 - Production of massive particles possible
 - top-quark, Higgs, SUSY particles, heavy gauge boson,...
- ▲ Particles are produced in strong interaction
 - Huge cross section for jet production
 - Need large reduction to see signals

▲ 7 interactions/crossing at $3 \cdot 10^{32} cm^{-2} s^{-1}$

SLAC Summer Institute, 08/02/2007

- ▲ Final states are complicated
 - Fragmentation of spectators
 - Additional jets due to gluon radiation

SUSY at the Tevatron

- There are three major areas to search for Supersymmetry at the Tevatron
 - ▲ Search for supersymmetric Higgs bosons
 - Search for Higgs bosons in τ final states
 - Higgs bosons searches using b-jets
 - ▲ Direct searches for other SUSY particles
 - Squarks and Gluinos
 - Charginos and Neutralinos
 - Long lived particles
 - ▲ Indirect searches
- Only a few selected topics will be covered in this talk
- For a comprehensive overview please refer to
- CDF http://www-cdf.fnal.gov/physics/physics.html
- DØ http://www-d0.fnal.gov/Run2Physics/WWW/results.htm

Standard particles

SUSY particles

Search for SUSY Higgs Bosons

universitätbonn

SLAC Summer Institute, 08/02/2007

Search for SUSY Higgs Bosons

- 5 Higgs bosons are predicted in SUSY models
 - ▲ MSSM Higgs sector specified by $\tan \beta$, m_A
- Neutral Higgs bosons h/H/A can be produced via gluon fusion or in association with jets
 - ▲ Coupling increases with $\tan^2 \beta \Rightarrow$ Large cross section
- At high aneta the main decay modes are

L_IL_E

▲ h/H/A→ $b\bar{b}$: 90% h/H/A→ $\tau\tau$: 10%

- ▲ Golden channels are $\tau_h \tau_e$ and $\tau_h \tau_\mu$
 - Large branching fraction, moderate background
- ▲ Other channels are less important
 - ► Fully leptonic channels: small branching fraction
 - Fully hadronic mode: huge multijet background

 $\tau_{h}\tau_{h}$

 $\tau_{\mu}\tau_{h}$

Search for SUSY Higgs Bosons (2)

- Major backgrounds are ${\rm Z}/\gamma^* \to \tau \tau$ and multijet production
 - \blacktriangle Require isolated lepton and isolated τ to reduce QCD contribution
 - ▲ Further reduce QCD by requiring large $H_T = \sum p_T$
 - ▲ Veto on events where E_T is aligned with visible τ decay products to suppress W+jet events
- Finally reconstruct visible mass

$$M_{\text{vis}} = \sqrt{(E_{\ell} + E_{\tau} + \not\!\!\!E_{\mathrm{T}})^2 - (p_x^{\ell} + p_x^{\tau} + \not\!\!\!E_{\mathrm{T}}^x)^2 - (p_y^{\ell} + p_y^{\tau} + \not\!\!\!E_{\mathrm{T}}^y)^2 - (p_z^{\ell} + p_z^{\tau})^2 }$$

Search for SUSY Higgs Bosons (3)

- CDF (3 channels)
 - 2σ excess in $\tau_h \tau_e$ and $\tau_h \tau_\mu$ channels
 - ▶ $m_A \approx 150 \text{ GeV}, \tan \beta \approx 50$
 - ▲ No excess in $\tau_e \tau_\mu$ channel
- DØ (1 channel)
 - ▲ No excess in $\tau_h \tau_\mu$ channel
 - ▲ Expect results in $\tau_h \tau_e$ and $\tau_e \tau_\mu$ channels later this summer

Limits

universität**bonn**

- Although there is excess seen by CDF, no evidence for Higgs production (yet)
 - ▲ Set limits in the $\tan \beta$ -m_A-plane

- What to expect in the future
 - ▲ More data, more channels, combination with $bh \rightarrow bb\overline{b}$ result

SLAC Summer Institute, 08/02/2007

Standard particles

SUSY particles

Search for Charginos and Neutralinos

SLAC Summer Institute, 08/02/2007

Search for Charginos and Neutralinos

- Associated production of Charginos and Neutralinos
 - ▲ Via W boson or Squark exchange
- Decay of Chargino
 - ▲ W bosons and lightest Neutralino
 - ▲ Slepton and neutrino
- Decay of Neutralino
 - ▲ Z bosons and lightest Neutralino
 - ▲ Slepton and lepton

• Final state consists of three charged leptons, two Neutralinos and a neutrino

- Trilepton channel is the golden mode for the search of Charginos and Neutralinos
 - ▲ Signature: three charged leptons plus missing transverse energy
- Challenges
 - ▲ Leptons have low transverse momenta
 - ▲ Small cross sections: $\sigma \times BR < 0.5 \text{ pb}$

SLAC Summer Institute, 08/02/2007

Backgrounds and Selection

- Main background is QCD multijet production
 - ▲ Very large cross section
- Require two isolated leptons
 - A Main contributions from Z/γ production

Backgrounds and Selection

- Main background is QCD multijet production
 - ▲ Very large cross section
- Require two isolated leptons
 - A Main contributions from Z/γ production
- Further possibilities to suppress background
 - ▲ Require a third lepton or track
 - ▲ Leptons must have same charge
 - ▲ Diboson production main contributor

SLAC Summer Institute, 08/02/2007

•

SLAC Summer Institute, 08/02/2007

Backgrounds and Selection

- Main background is QCD multijet production
 - ▲ Very large cross section
- Require two isolated leptons
 - A Main contributions from Z/γ production
- Further possibilities to suppress background
 - ▲ Require a third lepton or track
 - ▲ Leptons must have same charge
 - ▲ Diboson production main contributor
- Three different selection criteria
 - ▲ Three identified leptons
 - ▲ Two leptons plus additional track
 - Higher efficiency, but slightly more background
 - ▲ Likesign selection
 - Sensitive in regions with low p_T third lepton

Selection with Two Leptons

• Preselection

- ▲ Two good reconstructed leptons
- Anti– ${\rm Z}/\gamma^* \to ee,\, {\rm Z}/\gamma^* \to \mu\mu$ cuts
 - ▲ Small invariant mass
 - ▲ Not back-to-back leptons

• Significant missing transverse energy

Cuts using \mathbb{E}_{T}

- \mathbb{E}_{T} related cuts
 - \blacktriangle Cut on ${\not\!\!\!E}_T$ itself
 - ▲ Transverse mass cut: $m_T = \sqrt{\mathbf{p}_T \cdot \mathbf{E}_T \cdot (1 \cos \Delta \Phi(e, \mathbf{E}_T))}$
 - ► Rejects events with mismeasured lepton energies

Marc Hohlfeld

×

Cuts using \mathbb{E}_{T}

- \mathbb{E}_{T} related cuts
 - \blacktriangle Cut on ${\not\!\! E}_{\rm T}$ itself
 - ▲ Significance of \mathbb{E}_{T} : Sig(\mathbb{E}_{T}) = $\frac{\mathbb{E}_{T}}{\sqrt{\sum_{jets} \sigma^{2}(\mathbb{E}_{T}^{jet}||\mathbb{E}_{T})}}$
 - Only defined for events with jets
 - Rejects events with mismeasured jet energies

Third Track Selection

- Select high quality track to account for the third lepton
 - ▲ Track must be isolated in tracker and calorimeter
 - ► Efficient for electrons, muons and taus, suppresses tracks in jets
 - ▲ Use hollow cone for isolation
 - Also efficient for (3 prong) tau decays

Result

universität**bonr**

- No evidence for Charginos and Neutralinos found
 - ▲ Set limits on the production cross section times branching ratio
 - ▲ Translate these limits in mass limits

- Cross section limit: σ×BR~0.06 pb
- 3ℓ -max scenario ($m_{\tilde{\ell}_R} \gtrsim m_{\tilde{\chi}_1^{\pm}}$)
 - ▲ $m_{\tilde{\chi}_1^\pm} > 145 \text{ GeV}$

SLAC Summer Institute, 08/02/2007

- Cross section limit: $\sigma \times BR \sim 0.2 \text{ pb}$
- mSUGRA model without $\tilde{\ell}$ -mixing
 - ▲ $m_{\tilde{\chi}_1^{\pm}} > 130 \text{ GeV}$

Standard particles

SUSY particles

Search for Squarks and Gluinos

SLAC Summer Institute, 08/02/2007

Search for Squarks and Gluinos

- Squarks and Gluinos can be produced via strong interaction
 - Production depends on the masses of the Squarks and Gluinos
 - ► Either $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{g}$ or $\tilde{q}\tilde{q}$
 - ▲ Decays of Squarks and Gluinos
 - Squarks: $\tilde{q} \rightarrow q \tilde{\chi}^0$
 - Gluinos: $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0$
- \Rightarrow Three different analysis scenarios
 - 1 $\tilde{\mathrm{q}}\tilde{\mathrm{q}}$: 2 jets + $ensuremath{\mathbb{E}}_{\mathrm{T}}$ (Dijet analysis)
 - 2 $\rm \widetilde{q} \tilde{g}, \rm \widetilde{q} \tilde{q}$: 3 jets + $\not\!\!\!E_{\rm T}$ (3–jet analysis)

Squark and Gluino Selection

- Common selection for all three analyses
 - \blacktriangle 2 acoplanar jets and large \mathbb{E}_{T}
 - ▶ 1 or 2 additional jets (3–jet, Gluino analysis)
 - Reject events with electrons or muons
 - Suppress W and Z events

Jet

Neutralino

Missing E_T

Jet

Neutralino

- \blacktriangle Veto on events where \mathbb{F}_{T} is aligned with jets
 - Reject events with mismeasured jets

300

Data
 W→ lv + jets

 $Z \rightarrow vv + iets$

DØ Preliminary

Squark and Gluino Selection

- Common selection for all three analyses
 - - ► 1 or 2 additional jets (3–jet, Gluino analysis)
 - Reject events with electrons or muons
 - Suppress W and Z events
 - \blacktriangle Veto on events where ${\not\!\!\!E}_T$ is aligned with jets
 - Reject events with mismeasured jets
- At the end cuts on ${\not\!\!\!E}_{\rm T}$ and ${\rm H}_{\rm T}$ are optimized for every selection

Event Displays

Highest \mathbb{E}_{T} events

Dijet analysis

- H_T = 489 GeV
- $p_{T_{i}}^{jet_{1}}$ = 282 GeV, $p_{T}^{jet_{2}}$ = 174 GeV $p_{T}^{jet_{3}}$ = 33 GeV

SLAC Summer Institute, 08/02/2007

Gluino analysis

- H_T = 464 GeV
- $p_{T_{et_3}}^{jet_1}$ = 254 GeV, $p_{T_{et_3}}^{jet_2}$ = 77 GeV, $p_{T}^{jet_3}$ = 67 GeV, $p_{T}^{jet_4}$ = 66 GeV

Results

- The analyses are optimized for three benchmark scenarios
 - ▲ Vary m_0 and $m_{1/2}$, other parameters constant: $A_0 = 0$, $\mu < 0$ and $\tan \beta = 3/5$

Standard particles

SUSY particles

Search for long lived particles

SLAC Summer Institute, 08/02/2007

Search for CHAMPS

- Search for long lived Charged Massive Particles
 - Particles do not decay inside the detector
 - Highly ionizing and penetrating
- Signature in the detector: "slow muon"
 - ▲ Particle penetrates cal and muon system
 - ▲ Use time—of—flight system to measure β
- Signal expected at high mass
 - Background sits at low mass

- Main background components
 - Cosmic muons and instrumental background
- Interpreted in SUSY models with one compactified extra dimension
 - ▲ In these models Stop is the LSP
- Mass limit: $m_{\tilde{t}} > 250 \text{ GeV}$

SLAC Summer Institute, 08/02/2007

Search for Long lived Gluinos

universität**bonn**

- Long lived Gluinos are predicted in several models
 - ▲ For example split SUSY
- Gluinos can stop inside the detector
 - \blacktriangle Can decay at random times \Rightarrow Not related to any beam crossing
 - ▲ Decay can also occur if no beam is in the machine

- Very hard to model trigger for these events
 Need a good model for the alive time of the
 - detector

SLAC Summer Institute, 08/02/2007

Search for $B_s \rightarrow \mu \mu$

- New physics can also be observed indirectly
- The decay ${\rm B_s} \to \mu \mu$ is a very good candidate
 - ▲ Decay is a flavor changing neutral current
 - ► In the SM it is forbidden at tree level \Rightarrow Small branching fraction: BR(B_s $\rightarrow \mu\mu$) = $(3.4 \pm 0.4) \cdot 10^{-9}$
 - ▲ Enhancement in SUSY models: $\sim (\tan \beta)^6$

- Blind analysis \Rightarrow Predict events in signal region from sidebands
 - ▲ Good agreement between number of events predicted and observed
 - \blacktriangle No observation \Rightarrow Upper limits on the branching fraction

Current limits

- ▲ DØ (2 fb⁻¹): BR(B_s → $\mu\mu$) < 9.3 · 10⁻⁸
- ▲ CDF (0.78 ${\rm fb}^{-1}$): BR(B_s → $\mu\mu$) < 1.0 · 10⁻⁷

SLAC Summer Institute, 08/02/2007

Conclusion

• Summary

- ▲ Tevatron, CDF and DØ are performing well
 - Already collected more than 2.7 ${\rm fb}^{-1}$ of data
 - Nearly factor three more than the data used in the results presented here
- ▲ SUSY searches probing new regions in phase space
 - New mass limits beyond LEP2 limits
- Tevatron will further probe Supersymmetry in so far uncovered territory

BACKUP SLIDES

SLAC Summer Institute, 08/02/2007

Search for Stop Quarks

- Due to mixing in third generation, Stop can be light
 - ▲ Can be pair produced at the Tevatron
- If Stop is light enough it can only decay into ${\sf c}\chi_1^0$
 - ▲ The decays $t\chi_1^0$ and $b\chi_1^{\pm}$ are forbidden
- Major background contributions are
 - ▲ W+jets, Z+jets and multijet production
- Selection strategy
 - ▲ Select events with acoplanar dijets
 - Reject events with isolated electrons, muons or tracks
 - \blacktriangle Require large ${\not\!\!\!E}_{\rm T}$ and ${\not\!\!\!\!H}_{\rm T}$
 - Apply heavy flavor tagging to reduce light jet contributions from background
- Optimize selection for different mass points

Search for Stop Quarks (2)

- Main background after final selection
 - $W(\rightarrow \ell \nu)$ = jets and $Z(\rightarrow \nu \nu)$ + jets
 - ▲ Background varies between 57 and 82 events depending on Stop mass
- Signal efficiencies
 - ▲ Range from 0.1% to 5% depending on Stop and Neutralinos mass
- Data is in agreement with the SM expectation

- Mass limits
 - ▲ Stop: $m_{\tilde{t}} > 160 \text{ GeV}$
 - ▲ Neutralino: $m_{\chi_1^0} > 75 \text{ GeV}$

Marc Hohlfeld

Search for GMSB

- In Gauge Mediated SUSY Breaking (GMSB) models the Gravitino \tilde{G} is the LSP
 - ▲ If the Chargino $\tilde{\chi}_1^0$ is the NLSP it decays to Gravitinos: $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$
 - \blacktriangle Final state consists of two photons and ${\not\!\!\!E}_{\rm T}$ due to escaping Gravitinos
- Search for inclusive $\gamma\gamma$ + $ensuremath{\mathbb{E}_{\mathrm{T}}}$ events with 1.1 fb^{-1} of data

- Major background components
 - \blacktriangle Events with true ${\not\!\!\!E}_{\rm T}$
 - ▶ W+jets/ γ , $t\bar{t}$
 - - Multijets and direct $\gamma\gamma$ production, $Z \rightarrow ee$
- Diphoton selection yields 2341 events

SLAC Summer Institute, 08/02/2007

Search for GMSB (2)

• Search for the signal in the high \mathbb{E}_{T} region (for different energy scales Λ)

$ \not\!$	Background			Data	Signal		
(GeV)	true $ ot\!$	fake $ ot\!$	Total		$\Lambda = 75 \text{ TeV}$	$\Lambda = 90 \text{ TeV}$	
> 30	1.16 ± 0.14	9.62 ± 1.12	10.8 ± 1.1	16	28.3 ± 1.0	8.7 ± 0.3	
> 60	0.19 ± 0.07	1.44 ± 0.43	1.6 ± 0.4	3	18.1 ± 0.8	6.4 ± 0.3	

- No evidence for a signal
- Energy scale and mass limits
 - ▲ $\Lambda >$ 92 TeV
 - $\blacktriangle~m_{\tilde{\chi}_1^\pm}>$ 231 GeV, $m_{\tilde{\chi}_1^0}>$ 126 GeV

Marc Hohlfeld

Search for GMSB (3)

- Search for long lived Neutralinos
 - ▲ In GMSB models pair production of Gauginos is dominant
 - ▲ Gauginos decay into the lightest Neutralino
 - \blacktriangleright Final states consists of a delayed photon, jets and ${\ensuremath{\mathbb F}}_{\rm T}$
- Main selection criteria
 - ▲ Select events with time delayed photon

Mass limit (depending on lifetime)
 ▲ m_{χ̃1} > 101 GeV for τ = 5 ns

SLAC Summer Institute, 08/02/2007

Search for Stops in the Dilepton Channel

- B
- Search for scalar top quarks in final states with two leptons and two b-quarks
 - \tilde{t} decays dominantly into $b\ell\tilde{\nu}$ if $\tilde{t} \to b\chi_1^{\pm}$ and $\tilde{t} \to b\chi_1^0$ are forbidden
- Main selection criteria
 - ▲ Two isolated leptons
 - At least two jets, highest p_T jet must be tagged as b-jet (only $\mu\mu$ channel)

 - \blacktriangle Other kinematic variables: invariant mass, scalar sum of all $\rm p_{T}$

Search for Stops in the Dilepton Channel (2)

	Background			Data	Signal		
	$t\overline{t}$	Diboson	Total		Point A	Point B	
ee	7.4	20.2	31.7 ± 2.7	34	26.0 ± 1.5	17.3 ± 0.6	
$e\mu$	2.3	0	2.9 ± 0.4	1	3.1 ± 0.2	3.3 ± 0.4	

Good agreement of data and SM prediction

- Mass limits in $m_{\tilde{t}}$ - $m_{\tilde{\nu}}$ plane
 - ▲ Largest $m_{\tilde{t}}$ limit: $m_{\tilde{t}} > 186 \text{ GeV}$ (for $m_{\tilde{\nu}} = 71 \text{ GeV}$)
 - ▲ Largest $m_{\tilde{\nu}}$ limit: $m_{\tilde{\nu}} > 107 \text{ GeV}$ (for $m_{\tilde{t}} = 145 \text{ GeV}$)

Marc Hohlfeld

Search for Sbottom Quarks

- For high $\tan\beta$ the \tilde{b} -mass eigenstates have large separation
 - ▲ Sbottom quarks might be light enough to be pair produced at the Tevatron
 - Assume 100% branching fraction of \tilde{b} into $b\chi_1^0$
- Final state consists of two b–jets and $\not\!\!\!E_{\rm T}$
- Event selection
 - \blacktriangle At least two high $p_{\rm T}$ jets, one jet must be tagged as b–jet

 - Veto on isolated leptons

Search for Sbottom Quarks (2)

• Data is well described from SM prediction

SLAC Summer Institute, 08/02/2007

Search for Stop Quarks

- Search for scalar top admixture in $t\bar{t}$ events in the lepton+jets channel
 - ▲ Stop quarks are pair produced
 - ▲ Decay channels
 - $\blacktriangleright \quad \tilde{t}_1 \to b\chi_1^+ \to bW\chi_1^0$
 - $\blacktriangleright \ \tilde{t}_1 \to b\chi_1^+ \to c\chi_1^0$
 - $\sigma(\tilde{t}_1\tilde{t}_1) \approx 0.1 \times \sigma(t\bar{t})$ for masses of 175 GeV

• Start from a selection that is similar to $t\bar{t}$ selection

- ▲ Main backgrounds for $t\bar{t}$ measure ments are W+jet and multijet events
- ▲ tt̄ events are of course the major (irreducible) background for stop search
 - Use Likelihood to discriminate top decays

Search for Stop Quarks (2)

• Combine up to five variables in the Likelihood

- Events observed consistent with SM prediction
- No evidence for stop quark admixture
- Upper limits on stop quark production
 - ▲ $\sigma(\tilde{t}_1\tilde{t}_1) < 5.7-12.8 \text{ pb}$ (at 95% CL)
 - ▲ Factor 7–12 above the MSSM prediction

