

Gravity Probe B + a Hint of STEP

SLAC Summer Institute XXXV

C.W. Francis Everitt 9 August 2007

- Geodetic Effect
 - Space-time curvature ("the missing inch")
- Guide Star Tracking Telescope Gyro 2 block

- Frame-dragging Effect
 - Rotating matter drags space-time ("space-time as a viscous fluid")

Seeing General Relativity Directly

Red: Raw flight data Blue: With torque modeling (4 gyros co-processed)

Geodetic effect	marc-s/yr
Einstein expectation	- 6571 ± 1*
4-gyro result (1σ)	- 6578 ± 9
Overall error estimate ≤ 97 marc on gyro-to-gyro disagreements yet fully analyzed systematics	c-s/yr based & other not
SQUID noise limit (4-gyro)	
- 353 day continuous	± 0.12
- segmented data	± 0.5 - 0.9
* -6606 + 7 solar geodetic + 28 -	+ 1 quide star

 -6606 + 7 solar geodetic + 28 ± 1 guide star proper motion

> 1 marc-sec/yr = 3.2×10^{-11} deg/hr – width of a human hair seen from 10 miles

The GP-B Challenge

- Gyroscope (G)
- Telescope (T)
- G T
- Gyro Readout
- 10⁷ times better than best 'modeled' inertial navigation gyros
- 10³ times better than best prior star trackers
- <1 marc-s subtraction within pointing range</p>
- \longrightarrow calibrated to parts in 10⁵

Basis for 10⁷ advance in gyro performance

Space

- reduced support force, "drag-free"
- roll about line of sight to star

Cryogenics

- magnetic readout & shielding
- thermal & mechanical stability
- ultra-high vacuum technology

Modeling ad hoc [externally calibrated] vs physics-based

The GP-B Gyroscope

- Electrical Suspension
- Gas Spin-up
- Magnetic Readout
- Cryogenic Operation

"Everything should be made as simple as possible, but not simpler." -- A. Einstein

Challenge 1: < 10⁻¹¹ deg/hr Classical Drift

Seven Near Zeros

STANFORD

UNIVERSITY

1) Rotor inhomogeneities < 10⁻⁶ met < 10⁻¹¹ g 2) "Drag-free" (cross track) met 3) Rotor asphericity < 10 nm met 4) Magnetic field < 10⁻⁶ gauss met Pressure < 10⁻¹² torr met 5) 6) Electric charge $< 10^8$ electrons met Electric dipole moment 0.1 V-m 7) issue

Neither Near Zero alone does it

Gyro I: Suspension System

Operates over 8 orders of magnitude of g levels

DSP + Power Supply

Analog drive, Backup control

- Range of motion within cavity (15,000 nm) for:
 - science (centered in cavity)
 - spin-up (offset to spin channel ~ 11,000 nm)
 - calibration (offset, 200 nm increments)

Gyro II: The Spin-up Problem(s)

"Any fool can get the steam into the cylinders; it takes a clever man to get it out again afterwards." -- G. J. Churchward, ~ 1895

Gyro III: London Moment Readout

4 Requirements/Goals

- SQUID noise 190 marc-s/ \sqrt{Hz}
- Centering stability < 50 nm
- DC trapped flux < 10⁻⁶ gauss
- AC shielding > $\sim 10^{12}$

Challenge 2: Sub-milliarc-s Star Tracker

Detector Package

Dual Si Diode Detector

Challenges 3 & 4: Matching & Calibration

Dither -- Slow 60 marc-s oscillations injected into pointing system

 gyro output

 telescope output

⇒ scale factors matched for accurate subtraction

<u>Aberration (Bradley 1729)</u> -- Nature's calibrating signal for gyro readout

Orbital motion \implies varying apparent position of star (v_{orbit}/c + special relativity correction) Earth around Sun -- 20.4958 arc-s @ 1-year period

S/V around Earth -- 5.1856 arc-s @ 97.5-min period

Continuous accurate calibration of GP-B experiment

The GP-B Cryogenic Payload

Launch: April 20, 2004 – 09:57:24

On-Orbit: GP-B Mission Operations

Anomaly Room

Marcie Smith (NASA Ames) Kim Nevitt (NASA MSFC) Rob Nevitt (NavAstro) Brett Stroozas (NavAstro) Lewis Wooten (NASA MSFC) Ric Campo (Lockheed Martin) Jerry Aguinado (LM)

+ many more

MOC

Marcie Smith

STANFORD

OCKHEED MARTIN

UNIVERSITY

David Hipkins (HEPL) * Yoshimi Ohshima (A/A) Steve Larsen (LM) Colin Perry (LM) + many more!

Page 16

Suspension Performance On-Orbit

0.1

Freq (Hz)

0.05

0.15

0.2

<u>Gyro position</u> – non drag-free gravity gradient effects in Science Mission Mode

<u>Measurement noise</u> – 0.45 nm rms

0.25

Noise floor

Drag-Free: 2nd Near Zero

Proportional thruster He boil off gas – Reynolds number ~ 10 !!

Dan DeBra, * John Bull (A/A), * J-H Chen (A/A), * Yusuf Jafry (A/A), Jeff Vanden Beukel + team (LM)

Gyro Readout Performance On-Orbit

STANFORD

UNIVERSITY

Gyro	Experiment Duration (days)	SQUID Readout Limit (marc-s/yr)
1	353	0.198
2	353	0.176
3	353	0.144
4	340	0.348

Ultra-low Pressure: 5th Near Zero

Low Temperature Bakeout (ground demonstration)

Gyro spindown periods on-orbit (years)

	before bakeout	after bakeout
Gyro #1	~ 50	15,800
Gyro #2	~ 40	13,400
Gyro #3	~ 40	7,000
Gyro #4	~ 40	25,700

The Cryopump

John Lipa, John Turneaure (Physics) + students; adsorption isotherms for He at low temperature,* Eric Cornell, (undergraduate honors thesis)

pressure ~ 10⁻¹⁴ torr (+ minute patch-effect dampings)

Page 20

In-flight Verification, 3 Phases

- A. Initial Orbit Checkout 128 days
 - re-verification of all ground calibrations [scale factors, tempco's etc.]
 - disturbance measurements on gyros at low spin speed
- B. Science Phase 353 days
 - exploiting the built-in checks [Nature's helpful variations]
- C. Post-experiment tests 46 days
 - refined calibrations through deliberate enhancement of disturbances, etc. [...learning the lesson from Harrison & Cavendish]

Detailed calibration & data consistency checks eliminated many potential error sources & confirmed many pre-launch predictions, but...

Surprise 1 (Phase A, B) – Polhode-rate variations \implies affect C_g determinations Surprise 2 (Phase B, C) – Larger than expected misalignment torques

The GP-B Data Analysis Team

STANFORD UNIVERSITY

John Turneaure

Yoshimi Ohshima

John Lipa Dan DeBra

Bill Bencze

Mac Keiser Jeff Kolodziejczak Jie Li

Vladimir Solomonik

Paul Shestople

Paul Worden

Suwen Wang Peter Boretsky David Santiago John Goebel

Michael Heifetz

Barry Muhlfelder

Silbergleit

Mike Adams

Bruce Clarke

Dave Hipkins

Tom Holmes

Students

Jonathan Kozaczuk, Shannon Moore, John Conklin, Michael Dolphin Alex Matthew Tran, Gregor Hanuschak, Ed Fei, Michael Salomon, Sara Smoot

Surprise 1: Polhode Rate Variations

Observed rate variation: 2 analyses in close agreement

 10⁻¹³ W energy dissipation → spin axis motion from I₁ (min) to I₃ (max) in one year [D. DeBra]

Detailed model adding dissipation term to Euler equations

- No change in angular momentum alignment
- True energy dissipation with excellent fit to observed dissipation curves
- Rotor asymmetry parameter determinations $Q^2 = (I_3 I_2) / (I_3 I_1) \le 1$ [A. Silbergleit]

 \implies affects C_{α} determinations

STANFORD

Polhoding & C_g Determination

- C_{q} approaching 10^{-5} \longrightarrow linking data from many orbits
- The actual 'London moment' readout:

• Orbit-to-orbit fit of 4 to 6 polhode harmonics \longrightarrow net M_L+ M_T history

More advanced method: utilize Trapped Flux Mapping data

Page 24

STANFORD Trapped Flux Mapping & Polhode Phase

• Gyro Motion:

- Spin speed precision: ~30 nHz
- 10 X improvement in polhode phase & angle determination (phase known now to 0.1 radian over whole mission)

Trapped Flux Distribution

Surprise 2: Larger than Expected Misalignment Torques

Pointing to a succession of real & virtual guide stars

- duration 12 hours to 2 days
- misalignment range 0.1 to 7 degrees

Drift-rate azimuthal & linear to < 2% up to 1500 arc-s misalignment

Geometric Separation of R & µ Drifts

• Relativity (R)

Fixed direction in inertial frame

• Misalignment Drift (μ)

Torque ∞ to μ Drift \perp misalignment vector

- M. Keiser Observation
 - Component of R $\parallel \phi$ free of misalignment torques
 - Component of $R_{\perp} \phi \longrightarrow$ complete history of torque coefficient k

• ϕ modulated over year by annual aberration

defines a truly *physical* modeling process

Geometric Method Results

- Power of Geometric Approach
 - Clear proof of relativity separation
 - Diagnostic tool for other potential disturbances
- Path to Final GP-B Result

Recover t -3/2 dependence by *Integral* Geometric Method

- Original Mission Concept
 - $\delta\Omega = Lt^{-3/2}$, t ~ mission length
- Simple Geometric Approach
 - $\delta\Omega_{\rm G} = \sqrt{2} \, {\rm LT}^{-1} {\rm t}^{-1/2}$, T batch length

	SQUID Readout Limit (marc-s/yr)				
		Gyro 1	Gyro 2	Gyro 3	Gyro 4
Ori	ginal	0.198	0.176	0.144	0.348
Sir Geor (5-day	nple metric / batch)	19.8	17.6	14.4	33.5

Initial Year-Long 4 Gyro Average

Integral Method at Floor 2, but no Floor 2-Floor 1 iterative corrections

	Net expected *	4 gyro average, full year
NS	-6571 ± 1	-6578 ±9(1σ)
EW	-75 ± 1	-87 ± 9 (1σ)

- Caveat: current bound (worst case) on systematic error ≤ 97 marc-s/yr
- Encouraging features

STANFORD

- method effectively removes misalignment torque error
- path to dramatically smaller experimental uncertainty

	Earth	Solar Geodetic	Proper Motion	Net Expected
NS	-6606	+7	+28 ± 1	-6571 ± 1
EW	-39	-16	-20 ± 1	-75 ± 1

rigorous treatment of systematics in process

Page 29

The Way Forward

- A fully-physical Torque Model
 - Effectively realized through Integral Geometric approach
- Elimination of C_a scale factor issue by TFM
 - Known now to 3×10^{-4} ; with TFM ~ 10^{-5}
- Limit & goal of final analysis through December 2007
 - → SQUID limit 0.144 to 0.343 marc-s/yr
 - → segmented data raises these to ~ 0.5 to 1 marc-s/yr (Duhamel)
- Final 'double blind' comparison with HR8703 proper motion data

Next major announcement – December 2007

Page 31

Space > 5 Orders of Magnitude Leap

Page 32

NASA

STANFORD

Flight Inner Accelerometer

STEP: Credibility & Impact

- Robust Equivalence Principle data
 - 4 accelerometers, each $\implies \eta$ to 10^{-18} in 20 orbits
- Positive result (violation of EP)
 - Discovery of new interaction in Nature
 - Strong marker for unified theories
 - Implications for dark energy
- Negative result (no violation)
 - Severely limits approaches to problems of unification & dark energy
 - Strongly constrains supersymmetric & quintessence theories

"Improvement by a factor of around 10⁵ could come from an equivalence principle test in space at these levels, null experimental results provide important constraints on existing theories, and a positive signal would make for a scientific revolution." (p. 162) *Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century (2003)* -- National Academies Press, the National Academy of Sciences

Interdisciplinary Invention & Students

- The power of interdisciplinary invention
 - Physics-Engineering collaboration
 - Establishing creative industrial connections
- Student contributions
 - 85 Stanford PhDs to-date (29 physics, 55 engineering, 1 math)
 - 16 PhDs at other universities (4 at UAH)
 - 4 PhDs in progress (2 GP-B, 2 STEP)
 - 31 Master's & Engineer's degrees (20 GP-B, 11 STEP)
 - 364 Undergraduates (11 Departments), 55 High School students

