NA9A

Gravity Probe B + a Hint of STEP

SLAC Summer Institute $X X X V$
C.W. Francis Everitt

9 August 2007

The Relativity Mission Concept

$$
\boldsymbol{\Omega}=\frac{3 G M}{2 c^{2} R^{3}}(\boldsymbol{R} \times \boldsymbol{v})+\frac{G I}{c^{2} R^{3}}\left[\frac{3 \boldsymbol{R}}{R^{2}}(\boldsymbol{\omega} \cdot \boldsymbol{R})-\boldsymbol{\omega}\right]
$$

Frame-dragging Effect
39 milliarcseconds/year (0.000011 degrees/year)

Guide Star IM Pegasi (HR 8703)
 6,606 milliarcseconds/year (0.0018 degrees/year)

- Geodetic Effect
- Space-time curvature ("the missing inch")
- Frame-dragging Effect
- Rotating matter drags space-time ("space-time as a viscous fluid")

Seeing General Relativity Directly

Red: Raw flight data
Blue: With torque modeling
(4 gyros co-processed)

Geodetic effect	marc-s/yr
Einstein expectation	$-6571 \pm 1^{*}$
4-gyro result (1 σ)	-6578 ± 9

Overall error estimate ≤ 97 marc-s/yr based on gyro-to-gyro disagreements \& other not yet fully analyzed systematics
SQUID noise limit (4-gyro)

- 353 day continuous ± 0.12
- segmented data $\quad \pm 0.5-0.9$
* $-6606+7$ solar geodetic $+28 \pm 1$ guide star proper motion

```
1 \mathrm { marc-sec } / y r = 3 . 2 \times 1 0 ^ { - 1 1 } \mathrm { deg } / \mathrm { hr } -
width of a human hair seen from 10 miles
```

Page 3

The GP-B Challenge

- Gyroscope (G) 10^{7} times better than best 'modeled' inertial navigation gyros
- Telescope (T) 10^{3} times better than best prior star trackers
- G - T
- Gyro Readout
$\longrightarrow<1$ marc-s subtraction within pointing range
\longrightarrow calibrated to parts in 10^{5}

Basis for 10^{7} advance in gyro performance

Space

- reduced support force, "drag-free"
- roll about line of sight to star

Cryogenics

- magnetic readout \& shielding
- thermal \& mechanical stability
- ultra-high vacuum technology

Modeling ad hoc [externally calibrated] vs physics-based

The GP-B Gyroscope

- Electrical Suspension
- Gas Spin-up
- Magnetic Readout
- Cryogenic Operation

"Everything should be made as simple as possible, but not simpler."
-- A. Einstein

1) Rotor inhomogeneities	$<10^{-6}$	met
2) "Drag-free" (cross track)	$<10^{-11} \mathrm{~g}$	met
3) Rotor asphericity	$<10 \mathrm{~nm}$	met
4) Magnetic field	$<10^{-6} \mathrm{gauss}$	met
5) Pressure	$<10^{-12}$ torr	met
6) Electric charge	$<10^{8}$ electrons	met
7) Electric dipole moment	$\mathbf{0 . 1} \mathrm{V}-\mathrm{m}$	issue

Mass-Unbalance, Drag-Free:

 1st \& 2nd Near Zeros

$$
f \frac{\delta \mathrm{r}}{\mathrm{r}}<\frac{2}{5} \mathrm{v}_{\mathrm{s}} \Omega_{0} \quad \mathrm{v}_{\mathrm{s}}=\omega_{\mathrm{s}} \mathrm{r}=950 \mathrm{~cm} / \mathrm{s}(80 \mathrm{~Hz})
$$

Gyro I: Suspension System

Operates over 8 orders of magnitude of g levels

DSP + Power Supply

Analog drive, Backup control

- Range of motion within cavity (15,000 nm) for:
- science (centered in cavity)
- spin-up (offset to spin channel ~ 11,000 nm)
- calibration (offset, 200 nm increments)

Gyro II: The Spin-up Problem(s)

(1) Torque Switching Requirement

$$
\mathrm{T}_{\mathrm{r}} / \mathrm{T}_{\mathrm{s}}<\Omega_{0} \mathrm{t}_{\mathrm{s}} \sim 10^{-14}
$$

$\mathrm{T}_{\mathrm{s}}, \mathrm{T}_{\mathrm{r}}-$ spin \& residual cross-track torques
t_{s} - spin time; Ω_{0} - drift requirement

(2) Differential Pumping Requirement

spin channel ~ 10 torr (sonic velocity) electrode region $<10^{-3}$ torr

* Dan Bracken (Physics) Don Baganoff (Aero/Astro)
+ Gerry Karr (MSFC), John Lipa, John Turneaure \& 4 students
"Any fool can get the steam into the cylinders; it takes a clever man to get it out again afterwards." -- G. J. Churchward, ~ 1895

Gyro III: London Moment Readout

"SQUID" $\longrightarrow 1$ marc-s in 5 hours

4 Requirements/Goals

- SQUID noise 190 marc-s/VHz
- Centering stability < 50 nm
- DC trapped flux $<10^{-6}$ gauss
- AC shielding > ~ 10^{12}

Page 11

Detector
Package

Dual Si Diode Detector

NAOA STANFORD Shavisit Challenges 3 \& 4: Matching \& Calibration

Dither -- Slow 60 marc-s oscillations injected into pointing system

\Longrightarrow scale factors matched for accurate subtraction

Aberration (Bradley 1729) -- Nature's calibrating signal for gyro readout

$$
\text { Orbital motion } \underset{\left(\mathrm{v}_{\text {orbit }} / \mathrm{c}+\text { special relativity correction }\right)}{ } \text { varying apparent position of star }
$$ Earth around Sun -- 20.4958 arc-s @ 1-year period S/V around Earth -- 5.1856 arc-s @ 97.5-min period

\Rightarrow Continuous accurate calibration
of GP-B experiment

The GP-B Cryogenic Payload

Payload in ground testing at Stanford, August 2002

Launch: April 20, 2004 - 09:57:24

On-Orbit: GP-B Mission Operations

Gaylord Green

MOC

Anomaly Room
Marcie Smith (NASA Ames)
Kim Nevitt (NASA MSFC)
Rob Nevitt (NavAstro)
Brett Stroozas (NavAstro)
Lewis Wooten (NASA MSFC)
Ric Campo (Lockheed Martin) Jerry Aguinado (LM)

+ many more

Page 15

GP-B Gyro On-Orbit Initial Liftoff

Initial gyro levitation and de-levitation using analog backup system

David Hipkins (HEPL)

* Yoshimi Ohshima (A/A) Steve Larsen (LM)
Colin Perry (LM)
+ many more!

Suspension Performance On-Orbit

Gyro position -

 non drag-free gravity gradient effects in Science Mission Mode

Measurement noise 0.45 nm rms

Nes. Snag-Free: 2nd Near Zero

Proportional thruster
 He boil off gas - Reynolds number ~ 10 !!
 Dan DeBra, * John Bull (A/A), * J-H Chen (A/A), * Yusuf Jafry (A/A), Jeff Vanden Beukel + team (LM)

Page 18

Gyro Readout Performance On-Orbit

Gyroscope London Moment Data

Gyro	Experiment Duration (days)	SQUID Readout Limit (marc-s/yr)
1	353	0.198
2	353	0.176
3	353	0.144
4	340	0.348

Ultra-low Pressure: $5^{\text {th }}$ Near Zero

Low Temperature Bakeout (ground demonstration)

Gyro spindown periods on-orbit (years) before bakeout

Gyro \#1	~ 50	15,800
Gyro \#2	~ 40	13,400
Gyro \#3	~ 40	7,000
Gyro \#4	~ 40	25,700

The Cryopump

John Lipa, John Turneaure (Physics) + students; adsorption isotherms for He at low temperature,* Eric Cornell, (undergraduate honors thesis)
pressure $\sim 10^{-14}$ torr
(+ minute patch-effect dampings)

In-flight Verification, 3 Phases

A. Initial Orbit Checkout - 128 days

- re-verification of all ground calibrations [scale factors, tempco's etc.]
- disturbance measurements on gyros at low spin speed
B. Science Phase - 353 days
- exploiting the built-in checks [Nature's helpful variations]
C. Post-experiment tests -46 days
- refined calibrations through deliberate enhancement of disturbances, etc. [...learning the lesson from Harrison \& Cavendish]

Detailed calibration \& data consistency checks eliminated many potential error sources \& confirmed many pre-launch predictions, but...
Surprise 1 (Phase A, B) - Polhode-rate variations \Rightarrow affect C_{g} determinations
Surprise 2 (Phase B, C) - Larger than expected misalignment torques

Observed rate variation: 2 analyses in close agreement

Polhode Period (hours) vs Elapsed Time (days) since January 1, 2004

- $10^{-13} \mathrm{~W}$ energy dissipation \Rightarrow spin axis motion from $I_{1}(\mathrm{~min})$ to I_{3} (max) in one year [D. DeBra]
- Detailed model adding dissipation term to Euler equations
- No change in angular momentum alignment
- True energy dissipation with excellent fit to observed dissipation curves
- Rotor asymmetry parameter determinations $Q^{2}=\left(I_{3}-I_{2}\right) /\left(I_{3}-I_{1}\right) \leq 1$
[A. Silbergleit]
\Longrightarrow affects C_{g} determinations

Polhoding \& C_{g} Determination

- C_{g} approaching $10^{-5} \longrightarrow$ linking data from many orbits
- The actual 'London moment' readout:

London field at $80 \mathrm{~Hz}: 57.2 \mu \mathrm{G}$

Trapped fields	Gyro 1	3.0 MG
	-Gyro 2	$1.3 \mu \mathrm{G}$
	-Gyro 3	$0.8 \mu \mathrm{G}$
	-Gyro 4	$0.2 \mu \mathrm{G}$

- Orbit-to-orbit fit of 4 to 6 polhode harmonics \Longleftrightarrow net $M_{L}+M_{T}$ history

More advanced method: utilize Trapped Flux Mapping data

Man sume Trapped Flux Mapping \& Polhode Phase

- Gyro Motion:
- Spin speed precision: $\sim 30 \mathrm{nHz}$
- 10 X improvement in polhode phase \& angle determination (phase known now to 0.1 radian over whole mission)
- Trapped Flux Distribution

Surprise 2: Larger than Expected Misalignment Torques

Pointing to a succession of real \& virtual guide stars

- duration - 12 hours to 2 days
- misalignment range 0.1 to 7 degrees

> Mean Rate (marc-s/day) vs Mean Misalignment (arc-s)

Drift-rate azimuthal \& linear to < 2% up to 1500 arc-s misalignment

Geometric Separation of $R \& \mu$ Drifts

- Relativity (R)

Fixed direction in inertial frame

- Misalignment Drift (μ)

Torque \propto to μ
Drift \perp misalignment vector

- M. Keiser Observation
- Component of $R \| \Phi$ free of misalignment torques
- Component of $\mathrm{R} \perp \Phi \longrightarrow$ complete history of torque coefficient k
 - Φ modulated over year by annual aberration

Geometric Method Results

- Power of Geometric Approach
- Clear proof of relativity separation
- Diagnostic tool for other potential disturbances
- Path to Final GP-B Result

Recover $t^{-3 / 2}$ dependence by Integral Geometric Method

LOCKHEEDMARTIN

Initial Year-Long 4 Gyro Average

Integral Method at Floor 2, but no Floor 2-Floor 1 iterative corrections

	Net expected *	4 gyro average, full year
NS	-6571 ± 1	$-6578 \pm 9(1 \sigma)$
EW	-75 ± 1	$-87 \pm 9(1 \sigma)$

- Caveat: current bound (worst case) on systematic error ≤ 97 marc-s/yr
- Encouraging features
, method effectively removes misalignment torque error
, path to dramatically smaller experimental uncertainty

	Earth	Solar Geodetic	Proper Motion	Net Expected
NS	-6606	+7	$+28 \pm 1$	-6571 ± 1
EW	-39	-16	-20 ± 1	-75 ± 1

rigorous treatment of systematics in process

The Way Forward

- A fully-physical Torque Model
- Effectively realized through Integral Geometric approach
- Elimination of C_{g} scale factor issue by TFM
- Known now to 3×10^{-4}; with TFM ~ 10-5
- Limit \& goal of final analysis through December 2007
\Rightarrow SQUID limit 0.144 to 0.343 marc-s/yr
\Rightarrow segmented data raises these to ~ 0.5 to 1 marc-s/yr (Duhamel)
- Final 'double blind' comparison with HR8703 proper motion data

Next major announcement - December 2007
\Rightarrow on to STEP

$$
\text { Newton's Mystery } \begin{cases}F=m a & \text { mass - the receptacle of inertia } \\ F=G M m / r^{2} & \text { mass - the source of gravitation }\end{cases}
$$

Orbiting drop tower experiment $\left\{\begin{array}{l}\text { * More time for separation to build } \\ \text { * Periodic signal }\end{array}\right.$

Flight Inner Accelerometer

STEP: Credibility \& Impact

- Robust Equivalence Principle data
- 4 accelerometers, each $\Longrightarrow \eta$ to 10^{-18} in 20 orbits
- Positive result (violation of EP)
- Discovery of new interaction in Nature
- Strong marker for unified theories
- Implications for dark energy
- Negative result (no violation)
- Severely limits approaches to problems of unification \& dark energy
- Strongly constrains supersymmetric \& quintessence theories

"Improvement by a factor of around 10^{5} could come from an equivalence principle test in space at these levels, null experimental results provide important constraints on existing theories, and a positive signal would make for a scientific revolution." (p. 162) Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century (2003) -- National Academies Press, the National Academy of Sciences

Interdisciplinary Invention \& Students

- The power of interdisciplinary invention
- Physics-Engineering collaboration
- Establishing creative industrial connections
- Student contributions
- 85 Stanford PhDs to-date (29 physics, 55 engineering, 1 math)
- 16 PhDs at other universities (4 at UAH)
- 4 PhDs in progress (2 GP-B, 2 STEP)
- 31 Master's \& Engineer's degrees (20 GP-B, 11 STEP)
- 364 Undergraduates (11 Departments), 55 High School students

cryogenic
Page ${ }_{35}$ porous plug

TRIAD drag-free satellite, 1972

