CDMS and SuperCDMS

SLAC Summer Institute August 2, 2007 Blas Cabrera

Co-Spokesperson CDMS & Spokesperson SuperCDMS

- CDMS-II science results less than 1 evt / kg of Ge / month
- Status of CDMS-II 5-Tower run target < 1 evt / kg of Ge / year
- SuperCDMS 25 kg experiment
 - Two SuperTowers at Soudan (DOE & NSF started FY07)
 - SuperCDMS 25 kg at SNOLab (review FY08 for FY09 start)
- EDELWEISS and CRESST status & plans leading to EUREKA
- Comparisons with liquid experiments: XENON, WArP, COUPP
- Conclusions

Numerical simulations for DM Halos

- The phase-space structure of a dark-matter halo: Implications for dark-matter direct detection experiments, e.g., A. Helmi, S. White, and V. Springel PRD 66, 063502 (2002)
- Solar system moves with respect to zero mean velocity halo at 220 km/s

Today

Status of Direction Detection Search

• Several have the potential to reach 10^{-44} cm² soon and 10^{-46} cm² in future

.

Discrimination strategies

- Most particle physics experience in MeV range
- Direct detection requires keV scale

CDMS Collaboration

SLAC Summer Institute - CDMS

Blas Cabrera - Stanford University

CDMS-II at Soudan (2090 mwe)

- At SUF
 - 17 mwe
 - 0.5 n/d/kg
- At Soudan
 - 2090 mwe
 - 0.6 n/y/kg
- At SNOLab
 - 6060 mwe
 - 1 n/y/ton

SLAC Summer Institute - CDMS

CDMS-II Soudan facility

SLAC Summer Institute - CDMS

Page 10

Run 118 (1T) & Run 119 (2T) in Soudan

SLAC Summer Institute - CDMS

Page 11

CDMS Active Background Rejection

Detectors with excellent event-by-event background rejection

- Measured background rejection:
- 99.995% for EM backgrounds using charge/heat
- 99.4% for β 's using pulse risetime as well
- Much better than expected in CDMS II proposal!

Really Cool Detectors: ZIPs

SLAC Summer Institute - CDMS

Model ZIP Detector Signal

- Charge & Phonon signals occur on a similar timescale
- Phonon pulse time of arrival allows for event position reconstruction
- 20 keV event in a Si & Ge ZIP

ZIP Phonon Position Sensitivity

Energy calibration of Ge ZIP with ¹³³Ba source

Ionization energy in keV

Phonon energy (prg) in keV

SLAC Summer Institute - CDMS

Page 16

Is the Candidate Event Just Background?

- Very likely so!
- Event occurred during run when its detector, Z11, suffered reduced ionization yield
 - Worst run for this detector
- In hindsight, our cuts on the bad data periods for single detectors weren't strict enough
 - Some other detectors, without candidates, had similarly bad periods
 - Will improve data quality screening for next run

Improvements in Surface Event Rejection

- Significant improvements in our analysis of phonon timing information
 - Surface event rejection improved by x3; kept pace with exposure increase!
 - Cuts are set from calibration data (blind analysis)
- We still have more discrimination power available as needed
 - Can continue to keep backgrounds < 1 event as more data accumulates
 - This is the real strength of CDMS detectors!

How the detectors work

Measure both heat and ionization produced

Develop detailed detector MC

 Compare signal collected in one quadrant versus xy averaged over z for real ZIP T1Z5 (left) and simulated mZIP (right)

Scientific reach of CDMS at Soudan

Five Towers now in Soudan

SLAC Summer Institute - CDMS

Page 26

CDMS Event Di Thu Feb 8 Per Trigger Series Number Event Number Time since Levt (m Live Time since Le	splay [5-Tower] 02:09:15 2007 & WIMP Search = 1702071712 = 130063 = 7227 vt (ms) = 7189	Tower & detector wiring T4 ° T5 T3 T1 T2 North o : 21 & clockwise x : 21 & c-clockwise	Ampl vs [us] TrigInfo 240 rc rc 220 rc rc 200 rc rd 20 rc rd 21 rd rd 20 rd	•: Q P •: V S1 T3S1 T4S1 T5G1 S2 T3G2 T4G2 T5G2 G3 T3G0 T4S3 T5S3 S4 T3G4 T4G4 T5G4 G5 T3G5 T4G5 T5G5 S6 T3G6 T4G6 T5G6	TO Map (ColCode > 50 VADC) The Te Tse C-stem The Tw Tsw E-stem 326 S3ne S3n S3nw S3w S3sw S3s S3se 526 S2ne S2n S2nw S2w S2sw S2s S2se 516 S1ne S1n S1nw S1w S1sw S1s S1se Bnw Bw Bn Bne Be Bse Bs
350 300 150 100 50 0 265 486 606 806 1000126014601869	350 250 200 100 50 0 250 400 600 800 1608120014551630	350 300 150 100 50 50 50 50 50 50 50 50 50 50 50 50 5	350 250 150 150 9 260 400 600 866 1060 1250 1450 1859	356 256 200 150 50 50 50 50 50 50 50 50 50 50 50 50 5	
350 250 150 50 50 50 50 50 50 50 50 50 50 50 50 5	350 250 150 150 0 0 250 150 150 150 150 150 150 150 150 150 1	350 300 150 50 50 50 50 50 50 50 50 50 50 50 50 5	350 200 150 50 50 50 50 50 9 9 200 50 50 9 9 200 50 50 50 50 50 50 50 50 50 50 50 50 5	356 256 260 150 50 50 150 50 50 256 406 50 150 120140318	
350 250 150 150 0 250 150 200 150 200 150 200 200 200 200 200 200 200 200 200 2	350 200 150 150 0 0 0 200 150 0 0 200 150 0 0 200 150 0 0 200 200 200 200 200 200 200 200 2	910 750 500 100 100 200 100 200 200 200 200 200 2	350 200 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	356 300 250 150 100 0 0 	
350 250 150 150 100 250 250 250 250 250 250 250 250 250 2	356 200 200 150 0 0 0 0 200 400 600 800 1000120614551680	359 200 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 200 150 00 0 0 200 100 0 0 200 100 0 0 200 100 0 200 100 1	350 250 150 150 0 200 400 600 430 1200 1200 1405 16	
350 250 150 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	356 300 200 150 150 0 0 200 200 200 200 200 200	350 250 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 250 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	350 250 150 100 0 	
350 250 150 150 0 0 0 200 150 150 100 0 0 200 150 100 0 0 200 100 100 100 100 100 100 10		350 300 250 150 0 0 0 200 150 0 0 0 0 200 200 150 0 0 0 200 200 200 200 200 200 200 200	350 200 150 50 50 50 6 6 7 200 50 50 50 6 7 200 50 50 50 50 50 50 50 50 50 50 50 50 5	350 250 150 0 0 0 0 200 400 0 0 200 400 0 200 400 200 2	2008 0 20 40 60 80 100 120 140 160 180 200 500

Proposal to DOE and NSF - May 06 SuperCDMS 25 kg Experiment

The SuperCDMS Collaboration

California Institute of Technology Case Western Reserve University Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory National Institute of Standards and Technology, Boulder Queen's University, Canada Santa Clara University Stanford University University of California at Berkeley University of California at Berkeley University of California at Santa Barbara University of Colorado at Denver and Health Sciences Center University of Florida University of Minnesota

Spokesperson: Blas Cabrera
 Co-spokesperon: Dan Akerib
 Project Manager: Dan Bauer
 Chair of Board: Bernard Sadoulet

Scientific reach of SuperCDMS 25 kg

Explore very interesting region which is complementary to LHC

SUF (17 mwe), Soudan (2090 mwe), & SNOLab (6060 mwe)

- At SUF
 17 mwe
 - 0.5 n/d/kg
- At Soudan
 - 2090 mwe
 - 0.6 n/y/kg
- At SNOLab
 - 6060 mwe
 - 1 n/y/ton

SLAC Summer Institute - CDMS

SuperCDMS at SNOLab

★ SuperCDMS is approved to be sited at SNOLab New lab space (under construction - ready in 2007) ★ We have received strong interest from Canadian collaborators - Queens ... **CREUSER POUR TROUVER... L'EXCELLENCE** Sudbury, Ont. CA Sudbury Neutron Obs.

SLAC Summer Institute - CDMS

SuperCDMS in Expanded Ladder Lab

ST1&2 Soudan -> SNOLab like Tower 1 SUF -> Soudan

• Tower 1 (4 Ge & 2 Si) at SUF (Stanford) then at Soudan

SLAC Summer Institute - CDMS

1" thick ZIP processing at Stanford

dedicated sputtering system (in use)

SLAC Summer Institute - CDMS

spinner (in use)

Page 37

dry etch (in use)

aligner (in use) - plan new dedicated unit

Blas Cabrera - Stanford University

Data from UCB/Case TFs for Si 1" ZIP

Data from UCB/Case TFs for Ge 1" ZIP

Improved background rejection and reduction

Background rejection	×4
Analysis discrimination	×2
Background reduction	×5
Total Improvement	$= \times 40$
Production rate per kg	$\times 5$

Table 2: Targeted improvement factors over CDMS II advanced analysis levels (see Section 3.2) to achieve SuperCDMS 25 kg sensitivities with zero background from internal sources. The cosmogenic fast-neutron background is eliminated by the SNO-LAB overburden of 6000 mwe.

 to meet SuperCDMS 25 kg goals only need x20 actual

Increase phonon collection area x2 and new H-a-Si electrodes suppress charge backdiffusion x2

Expect at least an additional x2 from advanced timing analyses

Expect x2.5 from additional thickness and x2 from better control of Rn

Need x20 of this x40 total for the SuperCDMS 25 kg target background

Expect x2.5 from additional thickness and x2 from improved fabrication efficiency

Schematic of new 'SNObox'

Status of Direction Detection Search

• Several have the potential to reach 10^{-44} cm² soon and 10^{-46} cm² in future

.

Conclusion

- Soudan Towers 1&2 lead field by x10 spin-independent limits PRL 2006 and spin dependent limits PRD RC 2006.
- XENON10 preprint now leads field by x2 at high mass
- Soudan Towers 1-5 will start mid-2006 and run through 2007 for an additional x10 improved sensitivity.
- We have a great horse race for discovering WIMPs
- Strong science case for ton scale direct detection major projects, as endorsed by Dark Matter SAG and P5.
- WE ARE APPROVED TO PROCEED WITH 2 OF 7 TOWERS FOR SuperCDMS 25 kg EXPERIMENT, AND REVIEWS DURING FY08 FOR APPROVAL OF REMAING 5 TOWERS. WE CAN HELP MAINTAIN US LEAD IN THIS RESEARCH WHICH IS COMPLEMENTARY TO LHC AND FUTURE ILC.

SLAC Summer Institute - CDMS