

XENON

First Results from the XENON10 Experiment at Gran Sasso

Elena Aprile Columbia University

The XENON Project: Overview

Goal: detection of WIMPs via elastic scattering on Xe nuclei. Phased program to reach sensitivity to $\sigma \sim 10^{-46} \text{ cm}^2$ with a 1 ton scale low background detector (XENON1T). The proposed next phase is at the 100 kg scale to allow us to probe $\sigma \sim 10^{-45} \text{ cm}^2$ before 2009. Current XENON10 limit is 8.8 x 10⁻⁴⁴ cm² for 100 GeV WIMPs.

Method: two- phase (liquid/gas) Time Projection Chamber (TPC) to simultaneously measure the ionization and scintillation produced by low energy recoils in pure LXe (threshold < 10 keVr) and to reject >99.5% of gamma/beta induced background. Additional background rejection provided by 3D event localization, LXe self-shielding, multiple scatter signature, plus external shielding.

Project History:

2002: R&D for XENON funded by NSF

2003: two-phase TPC demonstrated. Aprile et al. IEEE Trans. Nucl. Sci., vol.51, no.5 (2004) 1986.

2004: scintillation response of LXe to neutrons measured. Aprile et al. Phys. Rev. D, 72, 072006 (2005)

2005: ionization yield of neutron recoils in LXE measured. Aprile et al. Phys. Rev. Lett. 97 081302 (2006)

2006-2007: 15 kg detector (XENON10) developed and installed underground at LNGS (NSF and DOE support). WIMP search data taken from Sep 2006 to Feb 2007. Results reported at the APS April meeting this year. *Angle et al. astro-ph/0706.0039*

Liquid Xenon for Dark Matter Detection

- Large A (~ 131) good for SI σ~ A² but need low threshold to avoid Form Factor suppression
- ¹²⁹Xe (26.4%) and ¹³¹Xe (21.2%) good for SD σ
- No radioactive isotopes Kr85 can be reduced to ppt
- LXe high stopping power (Z=54, ρ=3 g/cc) for compact, self-shielding geometry
- LXe efficient and fast scintillator (yield ~ 80% of Nal)
- LXe good ionization yield (W=15.6 eV); high emobility and saturated e-drift velocity
- Modest quenching factor for NR (~0.2)
- Background Rejection: Simultaneous Charge and Light detection (> 99.5%) plus 3D event localization and LXe self-shielding
- 'Easy' cryogenics at ~165K
- Inert, not flammable, very good dielectric
- Modest cost for large mass detector

The XENON Detector Concept

A two-phase Time Projection Chamber with 3-D Event Imaging

SLAC Summer Institute, August 2007

Ionization/Scintillation Mechanism in Noble Liquids

SLAC Summer Institute, August 2007

Charge and Light response of different particles in LXe

Distribution of ionization around the track of a high energy a-particle or electron

Aprile et al., Phys. Rev. D 72 (2005) 072006

The XENON10 Collaboration

SLAC Summer Institute, August 2007

Gran Sasso Lab – June 2006

5

The XENON10 Detector

XENON10: some details

The XENON10 Photomultipliers

- Hamamatsu R8520 1'' × 3.5 cm
- bialkali-photocathode Rb-Cs-Sb,
- Metal Channel; 10 dynodes
- Quartz window; at -100°C and 5 bar
- Quantum efficiency > 20% @ 178 nm
- Custom HV divider on Cirlex base

Signals from XENON10

SLAC Summer Ins

XENON10 @ LNGS

SLAC Summer Institute, August 2007

The XENON10 Shield

XENON10 Operating Underground

Detector operation and performance shows excellent stability over 10 months

SLAC Summer Institute, August 2007

XENON10 Gamma Calibration with Radioactive Sources

⁵⁷Co, ¹³⁷Cs Gamma Sources introduced in shield

- Determine electron lifetime: (1.8 ± 0.4) ms => << 1ppb (O₂ equiv.) purity
- Determine energy scale from primary light: 2.25 p.e./keV at 662 keV and 3.0 p.e./keV
- Test XY position reconstruction algorithms and vertex resolution:
- Determine (μ , σ) of Electron Recoil band \rightarrow Background Rejection

reconstructed source position (¹³⁷Cs)

SLAC Summer Institute, August 2007

XENON10 Live-Time / Dark Matter Run Stability

SLAC Summer Institute, August 2007

Energy Scale Calibration

Calibration with n-activated Xe

For uniform gamma irradiation we used a small amount of neutron activated Xe into the XENON10 detector in late Feb., after WIMP search data was finished

Position dependence of S1 signals in XENON10

XENON10 Gamma/Neutron calibration

SLAC Summer Institute, August 2007

Anomalous Leakage Events due to non-active LXe

Use S1 hit patten to reject these anomalous events

SLAC Summer Institute, August 2007

Use S1 hit patten to reject these anomalous events

Self-shielding XENON10 Detector

15 < drift time < 65 μ s, r < 80 mm (5.4 kg fiducial mass out of 15 kg) Overall Background in Fiducial Volume ~0.6 event/(kg day keVee)

LXe Stopping Power→Effective Background Reduction by volume cuts

XENON10 WIMP Search Data Blind Analysis

136 kg-days Exposure= 58.6 live days x 5.4 kg x 0.86 (Σ) x 0.50 (50% NR)

SLAC Summer Institute, August 2007

The "anomalous events"

WIMP-Nucleon Cross-Section Upper Limits (90% CL)

XENON10 WIMP Search Results for SD Interactions

SLAC Summer Institute, August 2007

XENON Program : 2007-2008

New detector to replace
XENON10 in current shield at
LNGS is under construction

150 kg total (70 kg in target)

◆Low activity PMTs and cryostat, active LXe veto, cryocooler and feed-throughs outside shield → large reduction in total gamma background compared to XENON10

 Systematic screening of components at LNGS

Optimized light detection for
<10 keVr threshold

New measurements of QF
below 10 keVr ongoing

Monte Carlo Simulations of Next XENON Detector Gamma Background

XENON Projected Sensitivity

Summary

The XENON approach to DM search has made rapid progress

XENON10 has placed the most stringent DM limits

Next phase (XENON50) aims at a factor 10 improvement in sensitivity by 2008

A ton scale experiment is clearly within reach before end of decade.

Essential to have multiple DM searches of enough sensitivity at the same time as LHC

