

ElectroWeak and Top Physics at the Tevatron

Monica Tecchio University of Michigan

On behalf of the CDF and D0 Collaborations

SLAC Summer School July 18th, 2006

Outline

Standard Model has been very successful at explaining matter as we know it.

We still need to test the symmetry breaking mechanism:

- Higgs not yet observed
- which new physics to stabilize quantum corrections to Higgs mass?

- In this talk, I present results from the Tevatron in EWK and top quark physics.
- Tevatron performance
- EWK/Top experimental signatures
- EWK Measurements:
 - Single boson
 - Diboson
- Top Measurements
 - Top cross section
 - Top decay properties
 - Top Searches

Tevatron

- Run II with $\sqrt{s} = 1.96$ TeV
- Record peak luminosity (Jan. '06): 1.7×10³²cm⁻²s⁻¹
- Integrated delivered luminosity: 1.5 fb⁻¹/expt
- CDF/D0 recorded luminosity: 1.3 fb⁻¹/expt

- Doubling time:~1 yr.
 Expect
 ~2 fb⁻¹ by 2006
 ~4 fb⁻¹ by 2007
 - ~8 fb⁻¹ by 2009

Monica Tecchio

Tevatron Physics

 Tevatron has huge physics breadth:

Trigger is key in reducing the huge amount of interactions producing "something" in the final state (trigger efficiency for high pT leptons ~90% for both CDF and DO)

Tevatron Collisions

- The hard scattering is not all there is
 - Parton Distribution Functions (PDF): fraction of (anti)proton carried by incoming partons.
 - Underlying Event (UE): extra stuff produce by spectator or multiple interactions.
 - W, Z, photon ISR PDF underlying Hard scattering even PDF ISR - 5 fraamentation 0

- Initial and Final State Radiation (ISR, FSR): extra gluons radiating off the original/final partons.
- Jets: fragmentation of quark/gluons and recombination into hadrons reconstructed inside a cone.

All of these processes, and more, have an impact on what we measure

Tevatron Experimental Signatures

 EWK and Top Physics is mostly done with high p_T leptons (e, mu and tau) and jets.

 Presence of neutrinos is revealed via Missing Transverse Energy (MET) in the calorimeter.

Tevatron Experimental Signatures

- Jet Energy Scale (JES) corrections are needed to go back to the energy of original parton
- b-jets are particularly prized: use (Silicon) vertex tracker to reconstructed displaced vertex

Backgrounds

Any process that can "emulate" the final state we are studying.

- Important distinction between:
 - Physics backgrounds
 - Instrumental backgrounds
- Backgrounds are measured using a combination of data driven and MC simulation methods.
- The backgrounds of today are the signal of tomorrow...

Systematics

Any uncertainty which has not to do with the sample statistics.

- Some systematics are common to all analysis
 - Luminosity uncertainty (6-7%).
- Some systematics are data-driven and scale with the luminosity
 - Lepton/jet identification.
 - Instrumental backgrounds.
 - Jet/lepton (E,p) scale and resolution.
- Some systematics come from theory and harder to beat down
 - DF's, ISR, FSR.
 - MC modeling of recoil and fragmentation.
 - Physics backgrounds cross-section.

W Mass Systematics (CDF Preliminary using 200 pb⁻¹)

Systematic Uncertainty	Electrons	Muons
Energy Scale & Resolution	70	30 Constrain with data -
Recoil Scale & Resolution	50	" J Roughly scale with L
W pT model	15	" Theoretical invuts
PDFs	15	<i>a</i> do not directly scale
QED	15	20 with <i>L</i>
Backgrounds	20	20

EWK Physics at the Tevatron

1. Single boson measurements

- High statistics samples: "standard candles" of HEP!
- Precision measurements of EWK parameters: W mass and width
- Constraints on PDF's and test of NNLO predictions: asymmetries and differential cross-sections.

2. Diboson measurements

- Low cross-section measurements.
- Test of EWK theory gauge nature via boson self-interactions.
- Test-bed for new/undiscovered particles searches.

W and Z Cross-Sections

W and Z are identified via high p_T I+MET or I⁺I⁻ events.

They provide samples used for:

- measuring trigger and lepton ID efficiencies
- calibrating energy and momentum scale
- understanding backgrounds
- checking luminosities
- identifying top!

proton

BR ~ 11%

Cross-sections are consistent with NNLO predictions!

$\sigma \times BR$	DØ	CDF
$\begin{array}{c} Z \to ee \\ Z \to \mu\mu \\ Z \to \tau\tau \end{array}$	$264.9 \pm 3.9 \pm 9.9 \pm 17.2 (177)$ $291 \pm 3.0 \pm 6.9 \pm 18.9 (148)$ $237 \pm 15 \pm 18 \pm 15 (226)$	$255.8 \pm 3.9 \pm 5.5 \pm 15.4 (72)$ $261.2 \pm 2.7 + 5.8 \pm 15.1 (337)$ $265 \pm 20 \pm 21 \pm 15 (350)$
$ \begin{array}{l} W \rightarrow e\nu \\ \text{high } \eta \\ W \rightarrow \mu\nu \\ W \rightarrow \tau\nu \end{array} $	$2865 \pm 8.3 \pm 76 \pm 186 (177)$ $$	$2780 \pm 14 \pm 60 \pm 167 (72)$ $2815 \pm 13 {+94 \atop -89} \pm 169 (223)$ $2786 \pm 12 {+65 \atop -55} \pm 166 (194)$ $2620 \pm 7.0 \pm 210 \pm 160 (72)$

Table: All values are in pb, \pm stat \pm syst \pm lum then (Lum pb^{-1})

07/18/2006

Boson Rapidity

W(Z) is produced in hard $q\bar{q}$ scattering inside $p\bar{p}$

Relative size of X_p and $X_{\overline{p}}$ determines the longitudinal momentum of the boson

Define boson rapidity as: $y = \frac{1}{2} \ln[(E + p_z) / (E - p_z)]$ $= \frac{1}{2} \ln(\frac{x_p}{x_p})$

Precision measurements of boson rapidity measure PDF's at $Q^2=M^2_W(M^2_Z)$.

High y region still statically limited but with more luminosity, it provides ______ check/constraint NNLO calculation at high x.

07/18/2006

W Forward Cross-Section

(223 pb⁻¹) measure W->ev cross-section using forward electrons (1.2 < $|\eta|$ <2.8).

 $s(W \rightarrow en) = 2796 \pm 13(stat) \pm 93(syst) \pm 162(lumi)pb$

NLO prediction: $s_W = 2684 \pm 54(syst)pb$

- Extension of W identification to large rapidity regions
- Allows test of W production theory
 - Ratio of W's reconstructed in central vs forward region is sensitive to W rapidity

$$\frac{N_{W}^{cen}}{N_{W}^{for}} = 0.925 \pm 0.033 = \frac{A^{cen}}{A^{for}} = R_{exp}^{cen/for}$$
where $N_{w} = (N_{obs} - N_{bkg})/\epsilon_{ID}$
and $\sigma(R)$ accounts for:
all but PDF uncertainties
but PDF uncertainties
but noisity uncertainty ~1%
$$R_{MRST}^{cen/for} = 0.941_{-0.015}^{+0.011}$$

$$R_{MRST}^{cen/for} = 0.941_{-0.015}^{+0.011}$$

CDF RUN 2 Preliminary - 223 pb

60

Central Region (|n|<1)

Centra

DATA

QCD W→tv + Z→ee

Forward Region (1.2 < [n] < 2.8) Forward

W → e v + background Uncertainty (background + trigger)

W → e v Candidates

electrons in 1.2 < n < 2.8

M_r(W) (GeV/c²)

272 GeV/c²

Events per 2

2000

1000

cceptance

0.7

0.6

0.5

W Mass

Fundamental EWK parameter

- Extracted from fit to Jacobian edge of M_T(W) (or its decay products)
- Radiative corrections to W propagator induce dependence on (M_{top}, M_H, M₂)

$$\underbrace{\mathbf{W} \quad \mathbf{t}}_{\Delta M_{W}} \mathbf{W} \quad \underbrace{\mathbf{W} \quad \mathbf{W}}_{W} \mathbf{W} \quad \underbrace{\mathbf{W} \quad \mathbf{W}}_{\mathbf{W}} \mathbf{W} \quad \underbrace{\mathbf{W}}_{\mathbf{V}} \mathbf{W} \quad \underbrace{\mathbf{W}}_{\mathbf{W}} \mathbf{W} \quad \underbrace{\mathbf{W}} \mathbf{W} \quad \underbrace{\mathbf{W$$

precisely measured M_W and M_{top} provide stringent constraints on Higgs mass.

• Equivalent constraint on M_H requires: δM_{top} =+/-1.5 GeV ($\delta M/M_{top}$ ~1%) δM_W =+/-10 MeV ($\delta M/M_W$ <0.1%)

W Mass measurement is all about the systematic uncertainty

- CDF aims at controlling individual uncertainties to 10 MeV level to produce overall δM_W=25 MeV.
- D0 expects to achieve δM_W =40 MeV.

W Width

- Try to find out whether Γ_W is consistent with $\Gamma(W \rightarrow |v|)$.
- 1. Direct measurement of Γ_W using events in the $M_T(W)$ distribution away from Jacobian edge
- 2. Indirect measurement of $\Gamma_{\rm W}$

LEP : BR($Z \rightarrow l^+ l^-$) = 0.033658 ± 0.000023

Identify W/Z events with a single set of cuts to maximally exploit uncertainty cancellation in the ratio

07/18/2006

Monica Tecchio

W Charge Asymmetry

Asymmetric PDF's u(x)>d(x)

Asymmetric W+/W- rapidity distributions

Asymmetry in W production is measured with angular distribution of decay lepton and has to be convoluted with V-A nature of W decay.

$$A(\eta_l) = \frac{d\sigma_{+}/d\eta - d\sigma_{-}/d\eta}{d\sigma_{-}/d\eta + d\sigma_{+}/d\eta} = A(y_W) \otimes (V - A)$$

W Charge Asymmetry Measurement

(230 pb⁻¹) use W-> $\mu\nu$ decays

Error bars are sum of statistical (dominant) + systematic uncertainty and comparable to PDF's uncertainty

Monica Tecchio

(170 pb⁻¹) use W->ev decays

Separate high p_{T} leptons, which are more sensitive to PDF's

Diboson Production

- Probe boson self-interactions
- Background to tt, H->WW, HW/HZ
- Sensitive to new physics

Tevatron can study different combinations and explore higher vs than LEP.

EWK Summary

Many new results from the Tevatron: all in agreement with SM predictions!

- High precision in single boson channels is helping with the modeling of hadron collisions.
- High statistics is allowing the study of previously inaccessible SM decays.
- Detection techniques are improving and preparing the turf for Higgs and new physics searches.
- LHC will benefit from big increase in production rate for EWK processes but life is not that easy...

LHC goal on W mass: dM_w=15 MeV ...but require knowledge of the lepton (E, p) scales to 0.02%!

Top Cross Section

M _{top} (GeV) @ vs= 1.96 GeV	σ _{NLO} (pb) ± δσ from PDF
170	7.8 ± 1.0
175	6.7 ± 0.8
180	5.7 ± 0.7
SM pred: Bonciani e Kidonakis	t al. hep-ph 0303085 et al. PRD 68 114014

- Measured in all topologies.
- Use complimentary techniques: topological (counting) vs shape fit.
- Provide sample composition needed for top property studies.
- Deviation from SM expectations could indicate non-SM production mechanism or new physics in top sample.

Lepton+jet Cross Section

- This is the golden channel for its high yield and relative purity (after b-tag)!
- Used in top property measurements, single top and Higgs searches.

Dilepton Cross Section

- S:B already good enough after 2 leptons + MET + >=2 jets
- b-tagging not needed

 Cross-section persistently higher that l+jets: add b-tag to improve S:B further.

All Hadronic Cross Section

- Start from a sample >=6 jets (special trigger). Still overwhelmed by QCD multijets background.
- Combine topological selection and b-tag
- Lot's of data to model background (-: !

 S_{tt} (allhad) = 12.1 ± 4.9_{stat} ± 4.6_{syst} pb

$$m{s}_{ ext{tf}}$$
 (allhad) = $8.0 \pm 1.8_{ ext{stat}} \pm 3.0_{ ext{syst}} ext{ pb}$

07/18/2006

Monica Tecchio

Tauonic Cross-Section

Search for $t\bar{t} \rightarrow tn \ell n b\bar{b}$ with τ decays to hadrons

	Electron + tau (359 pb-1)	Muon + tau (344 pb-1)
Jets fake taus	0.91 ± 0.29	0.92 ± 0.29
Elecs fake taus	0.10 ± 0.025	0.05 ± 0.012
Z? tt + 2 jets	0.38 ± 0.12	0.31 ± 0.09
WW + 2 jets	0.034 ± 0.011	0.027 ± 0.008
Total background	1.42 ± 0.31	1.31 ± 0.30
ttbar ? l+t	$\textbf{1.32} \pm \textbf{0.05}$	$\textbf{0.92} \pm \textbf{0.05}$

Probability for the expected background to have fluctuated to the 5 observed events or more (p-value) is 15%, equivalent to ~1 σ significance for signal observation.

Using multi-jets trigger sample, require significant MET to identify tau hadronic decays (and recover l+jets acceptance).

$$s_{tt}$$
-(MET + jets) = 5.8 ± 1.2_{stat} ± 0.8_{syst} pb

Top Cross-Section Summary

Tevatron goal: 10% uncertainty/experiment with 2 fb⁻¹ LHC goal: <10% uncertainty with 10 fb⁻¹ and ultimately <5%.

07/18/2006

Top Production Mechanism

gg->tt vs qq->tt production mechanism results in different "underlying" activity.

Use number of low $p_{\rm T}$ (0.3 to 2.9 GeV) tracks away from jets as a discriminator

- Calibrate <Ng> vs <Ntrk> correlation using dijet and W+0/1/2 jet data.
- Fit I+jets tagged top sample (330 pb⁻¹) to gluon-rich and no-gluon templates

$$\frac{\sigma(gg \to t\bar{t})}{\sigma(p\bar{p} \to t\bar{t})} = 0.25 \pm 0.24(stat) \pm 0.10(syst)$$

5

20

25

30

35

gluon rich

Monica Tecchio

Top Mass

Fundamental parameter of SM.

Recent Tevatron combination: M top = 172.5 ± 2.3GeV

• EWK fit gives: $M_{H} = 89^{+42}_{-30}GeV$ (68% C.L.) $M_{H} < 175GeV$ (95% C.L.)

- In Run II, expect δM_W= ±25 MeV and δM_{top}= ± 2 GeV
 ⇒ 35% constraint on M_H.
- Sensitive to new physics through radiative corrections.

Top Mass Measurement

Top Mass with Template Method

- Evaluate event-by-event best "reconstructed mass", M_{rec}, by using observed kinematics of ttbar event (e.g.: χ² fitter)
- Create "templates", i.e. MC predictions for M_{rec} using different true masses, M_{top}.

Measure top mass with likelihood fit of data M_{rec} to signal + background template.

Top Mass in I+jets

JES uncertainties are the largest source of systematics:

$$\pm 1s_{\text{JES}} \Rightarrow s_{M_{\text{top}}} = \pm 3\text{GeV}$$

Fit simultaneously for $M_{W\text{--}jj}$ and M_{bjj} using 2D templates of true M_{top} and σ_{JES}

(680 pb⁻¹) achieves world single best measurement and improves JES systematics by 40% by using in-situ calibration

$$M_{top} = 173.4 \pm 2.5(stat. + JES)$$

±1.3 (syst.) GeV/c²

best measurement (370 pb⁻¹) uses a ME method with simultaneous JES fit

$$M_{\text{top}} = 170.6 \pm 4.4_{\text{stat+JES}} \pm 1.4_{\text{syst}} \text{GeV}$$

07/18/2006

Top Mass Measurement with ME

 Calculate event-by-event signal probability curve (rather than single M_{rec}) using decay matrix element and transfer functions.

$$\frac{1}{\sigma(M_t)} \frac{d\sigma(M_t)}{d\mathbf{x}}$$

M_{top}

P_{signal}

 (M_t)

M_{top}^I

M_{top}

 M_{top}

- Calculate event-by-event background probability (no $\frac{dependence \text{ on } M_{top}!)}{d\mathbf{x}} = \frac{1}{N} \int d\Phi_6 |\mathcal{M}_{t\overline{t}}(p_i; M^{-1})| \mathcal{M}_{t\overline{t}}(p_i; M^{-1})|$
- Combine signal and background probability in one likelihood vs M_{top} for entire sample.
- ME Method use maximal information per event at a price of simplified assumptions.
- Final mass result and uncertainty is calibrated against simulated events.

background

Top Mass in dilepton

Under constrained system: two neutrinos but only one MET measurement.

(1 fb⁻¹) assumes highest two E_T jets are the b-jets and integrate ME probability over 8 unknowns ($\vec{p}(v_1), \vec{p}(v_2)$ and $p_T(tt)$)

Using 78 events (27.8 bkgr)

 $M_{rop} = 164.5 \pm 3.9_{stat} \pm 3.9_{syst} \text{ GeV}$

- Confirmed in b-tag dilepton sample (S:B~1:30)
- Consistent results in template measurements.

best measurement (370 pb⁻¹) uses Matrix Element Weighting method:

$$M_{\text{top}} = 178.1 \pm 6.7_{\text{stat}} \pm 4.8_{\text{syst}} \text{GeV}$$

Top Mass in All Hadronic

Low S/B (~1/8) and large combinatorial background (90 permutations for 6 jets)

- Ideogram Method is a hybrid template and ME technique:
- Define event-by-event 2-D likelihood $L_{event}(M_{top}, C_s) = \sum_{i=1}^{90} w_i \left[C_s \text{Signal} + (1 - C_s) \text{Bkgr} \right]$
- Signal template is the combination of a 2D mass fitter and a combinatorics
 fitter

Using 370 pb⁻¹,

$$M_{top} = 177.1 \pm 4.9_{stat} \pm 4.7_{syst} \text{ GeV}$$

Top Mass Results

Top Charge and Lifetime

Top quark in SM has charge 2/3e. Some models propose an exotic 4th guark with Q=4/3e

(365 pb⁻¹) in l +4jets (2 btag) use a jet charge algorithm to discriminate between b and \overline{b} .

Top in SM has very short lifetime $(SM c\tau \sim 3 \times 10^{-10} \mu m)$

(320 pb⁻¹) look for anomalous lifetime by fitting impact parameter of lepton in l+jets events

data: RMS=33.4 ± 1.9 μm

best fit (RMS=41.3 µm)

Impact parameter of lepton

CDF Run 2 Preliminary

16

14 ⊧

12

_318 pb⁻¹

W Helicity Measurements

Assume V-A and measure F₀/F_ with other components fixed at SM value.

(370 pb⁻¹) reconstructs cos(θ*) in dilepton and lepton+jet events to extract F+

 $F_{+} = 0.08 \pm 0.08_{stat} \pm 0.06_{syst}$

Measure F₊ and put limits on V+A/new physics.

has 3 new measurements:

1. $\cos(\theta^*)$ (318 pb⁻¹) with full tt reconstruction in l+jets

$$\begin{split} F_{0} &= 0.85 \pm 0.19_{stat} \ \pm 0.06_{syst} \\ F_{+} &< 0.26 \ (@95\% \ C \ L.) \end{split}$$

- M²_{Ib} (750 pb⁻¹) in dil and l+jets
 F₊ < 0.09 @95% C .L.
- 3. $\cos(\theta^*) (955 \text{ fb}^{-1}) \text{ in } \text{l+jet samples}$ using the mass χ^2 fitter $F_0 = 0.61 \pm 0.12_{\text{stat}} \pm 0.04_{\text{syst}}$ $F_+ = -0.06 \pm 0.06_{\text{stat}} \pm 0.06_{\text{syst}}$ $F_+ < 0.11 (@95\% C.L.)$

Search for Single Top

 Single top is produced via weak interaction at a rate ~1/3 that of top. Allows direct measurement of V_{tb}.

vs = 1.96TeV	NLO s
t-channel	1.98±0.25 pb
s-channel	0.88±0.11 pb

B.W. Harris et al. Phys. Rev. D 66 054024 (2002)

- Kinematically wedged between non-top and top signal, plus high backgrounds (S/B~1/20) require very sophisticated analysis techniques.
- Use I +MET+2jet (>=1 btag) events: same signature as tt →WH(H → bb)
- s and t-channel searched jointly and separately (have different sensitivity to new physics).

Single Top Limits

(695 pb⁻¹) has 2 analysis:

- 1. Multivariate Likelihood Function
- 2. Neural Network

) 15 95	5% observed (expected) exclusion limit
~~ ` X	getting close to SM expectations!

The needle(x10!) in the haystack

(370 pb⁻¹) uses a likelihood

discriminant.

Search for Resonant Production

Look for bumps in the ttbar invariant mass spectrum

 $p\overline{p} \to X^0 \to t\overline{t}$

(680 pb⁻¹) looks for generic spin 1 resonance (X⁰)

- Assume $\Gamma_{X0} = 1.2\% \times M_{X0}$
- Test masses between 450 GeV and 900 GeV in 50 GeV increments.

Other Searches in Top Sample

- No evidence for t'observed.
- Set 95% confidence level limits on $s(t') \times BR(t' \rightarrow Wq)^2$
- Exclude $m_{t'} < 258 \text{ GeV}$ for $BR(t' \rightarrow Wq) = 100\%$

(230 pb⁻¹) has search for W ' \rightarrow tb in the single top sample by fitting M_{tb}

- No excess observed
- 95% upper limit on W production: 1.8/1.4/2.2 pb for Mw'=600/700/800 GeV.
- 200-650 GeV range excluded for W with SM-like couplings.

Are we on top of things?

- Top quark is a well behaved ~11 year old so far.....
- CDF and DO have used samples 3-10 times the Run I statistics to:
 - re-established analysis tools for top physics
 - approached or even surpassed level of precision set for Run II
 - try new and daring ideas
- Top cross sections is measured at 15% level.
- Top mass precision is already known at 1.5% level.
- Single top is behind the corner....
- Still hoping it will act out as any teenager does!

SN

Conclusions

- Tevatron is producin
 - Making precision m Model parameters
 - Discovering new SA predicted in Beyon
 - Unveiling SM top q

All results so for or

ortant Standard

its on particles

onica Tecchio

TALY