The LHCb Experiment I Physics

XXXIV SLAC Summer Institute, 17-28 July, 2006

Tatsuya NAKADA CERN and Ecole Polytechnique Fédérale de Lausanne (EPFL)

1) A bit of history

Ideas to use LHC as a B factory: already in early 90's Expressions of Interest presented at LHC Evian Workshop in March 1992: (Even three of them!) -Forward collider experiment \odot large bb cross section -Fixed target experiment with an extracted proton beam ^(C) B decays visible in the vertex detector (large boost) -Fixed target experiment with an internal gas jet target © a priori known small primary vertex

NB: e⁺e⁻ B factory situation was still unclear at that moment Europe:

PSI, turned down by the CH authority in 1989
No strong push by CERN (ISR-B) nor
DESY (HELENA) managements
Novosibirsk, transition from Soviet to Russia in 1991

US:

SLAC versus Cornell during the SSC up and down era

Japan:

KEK, no top found by the TRISTAN

After the Evian workshop in 1992...

PEP II and KEKB have been approved for FY 1994 asymmetric e⁺e⁻ colliders at Y(4S) using PEP and TRISTAN tunnels, respectively BABAR (PEP II) and BELLE (KEKB) detectors

general purpose e^+e^- detectors for comprehensive studies of heavy flavours (b, c, τ) including CP violation

Followed by

Internal metal wire targets in the HERA proton ring at DESY 900 GeV/*c* p beam hallow against Cu and Wu wires HERA-B detector

fixed target experiment with a primary goal to find CP violation in $B_d \rightarrow J/\psi K_S$ decays

The LHC front

three Letters of Intent have been submitted in Nov 1993 LHCC recommended none of them but asked to design a new collider mode experiment \Rightarrow The LHCb Experiment

Letter of Intent in Aug 1994 Technical Proposal in Feb 1995

Physics background at that time: $P_{\pi\pi} = \frac{\langle \pi \pi | H | K_L}{\langle \pi \pi | H | K_S}$ $P_{\pi\pi} = \frac{\langle \pi \pi | H | K_L}{\langle \pi \pi | H | K_S}$ $P_{\pi\pi} = \frac{\langle \pi \pi | H | K_L}{\langle \pi \pi | H | K_S}$ $P_{\pi\pi} = \frac{\langle \pi \pi | H | K_L}{\langle \pi \pi | H | K_S}$ $P_{\pi\pi} = \frac{\langle \pi \pi | H | K_L}{\langle \pi \pi | H | K_S}$ $P_{\pi\pi} = \frac{\langle \pi \pi | H | K_L}{\langle \pi \pi | H | K_S}$ $P_{\pi\pi} = \frac{\langle \pi \pi | H | K_L}{\langle \pi \pi | H | K_S}$

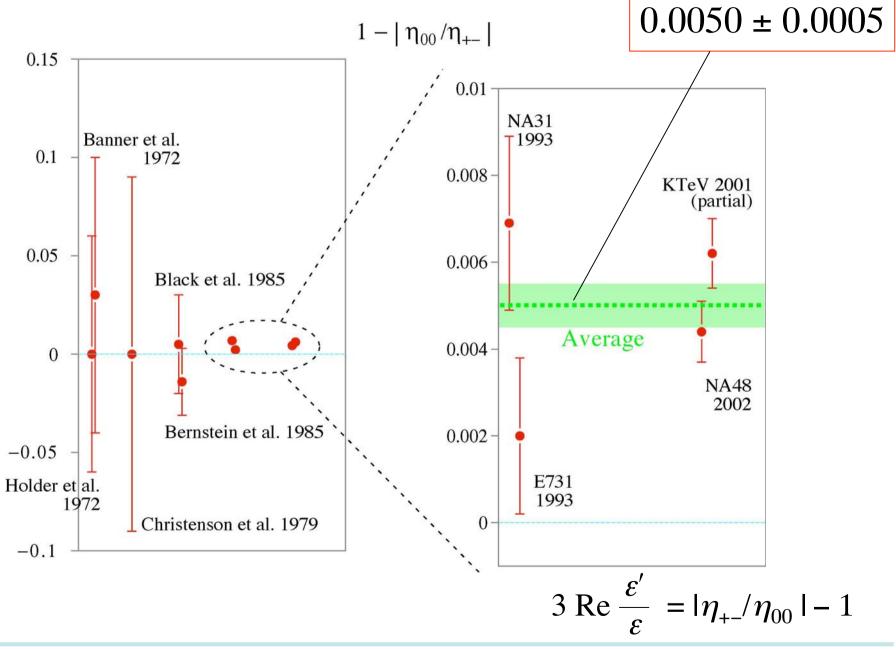
$$K^{0} \stackrel{M_{12}}{\longrightarrow} \overline{K}^{0} \qquad \text{Re } \varepsilon_{K} = \text{Re } \eta_{\pi\pi} \neq 0$$

If due to the interplay between the oscillations and decays

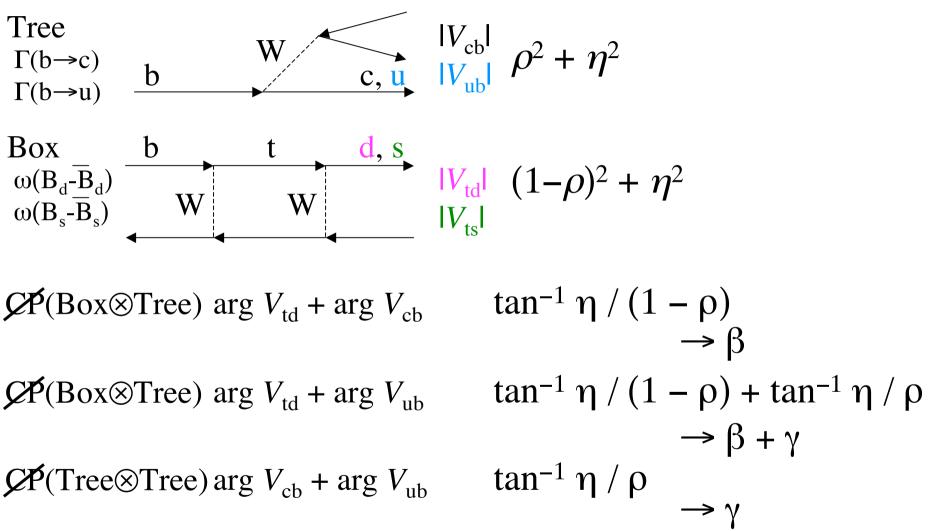
$$K^{0} \stackrel{p}{\underset{q}{\longrightarrow}} \frac{K^{0}}{\overline{K}^{0}} \stackrel{A}{\underset{\overline{A}}{\longrightarrow}} \pi\pi \qquad \text{Im}(\frac{q \overline{A}}{p A}) \neq 0 \qquad \text{Im } \eta_{\pi\pi} \neq 0$$

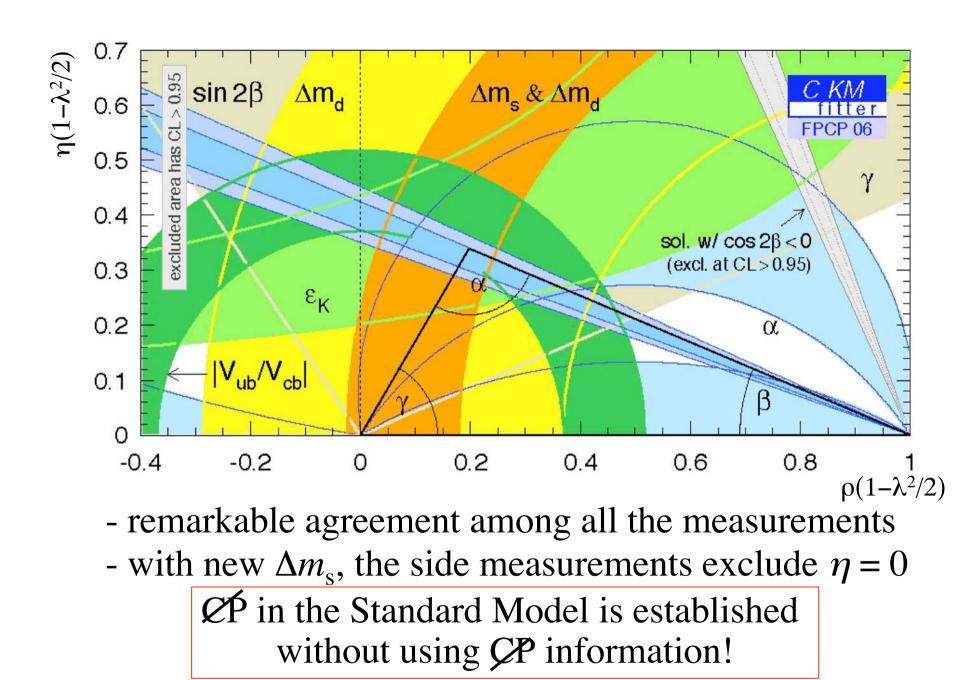
The major goal of the first generation "high statistics" B experiments includes

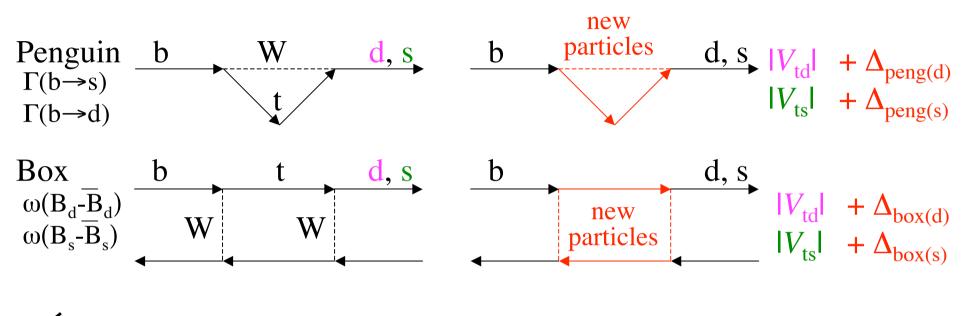
-to measure \mathcal{O} violation outside of the K⁰ system, i.e. the B meson systems, in particular $B_d^0 \rightarrow J/\psi K_S$, -to determine (ρ, η) without \mathcal{O}


BABAR, BELLE, HERA-B and a B experiment at LHC (LHC was supposed to start before 2000)

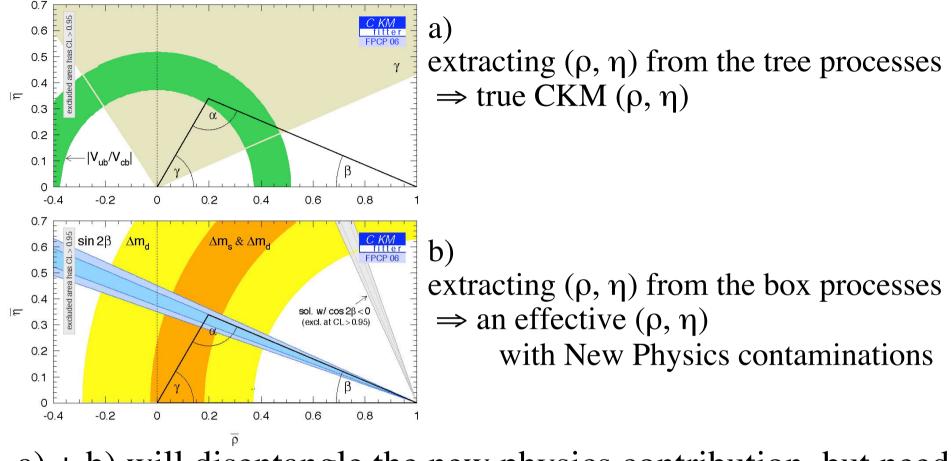
However for LHCb:


Starting of LHC slipped to 2005 (now 2007)
Emphasis of physics goal was also put for search for New Physics
For the final approval in 1995, a physics case with possible New Physics presented at LHC Committee


Then, two B factories and experiments working very well $\text{Re}(\varepsilon'/\varepsilon) \neq 0$ well established (NA48, KTeV) CDF and D0 exploring some B (importantly B_s) physics further emphasis on New Physics for LHCb \Rightarrow a challenge for the detector... After cancellation of BTeV, LHCb is the only approved dedicated B experiment >2009 (Super B factory?)



2) Where are we and how do we continue? Assuming the Standard Model prescription...



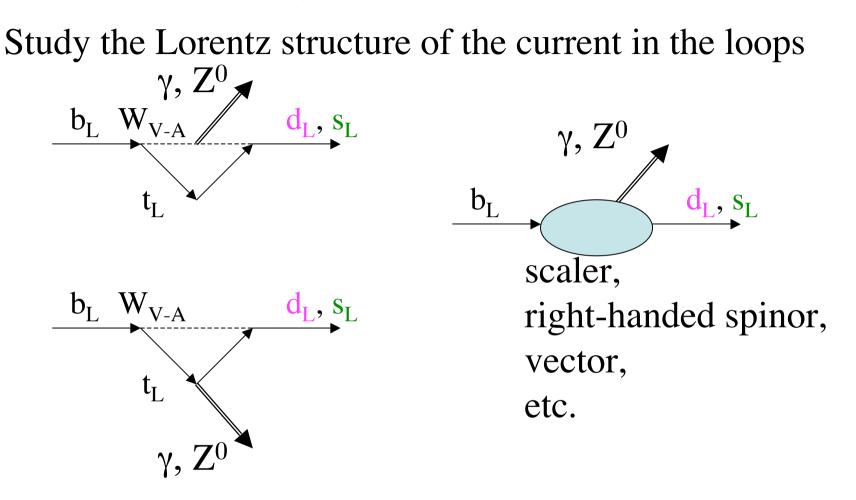
New Physics can contribute in the loop level, "virtual" i.e. box and penguin diagrams

 $\mathcal{CP}(Box \otimes Tree) \operatorname{arg} V_{td}(V_{ts}) + \operatorname{arg} V_{cb}(V_{ub}) + \Phi_{box(d)}(\Phi_{box(s)}) + \Phi_{peng(d)} + \operatorname{arg} V_{td} + \operatorname{arg} V_{td} + \Phi_{box(d)}(\Phi_{box(s)}) + \Phi_{peng(d)} + \operatorname{arg} V_{td} + \Phi_{box(d)}(\Phi_{box(s)}) + \Phi_{peng(s)} + \Phi_{peng$

An example of the next analysis steps...

a) + b) will disentangle the new physics contribution, but need Much better measurements of γ , $\sigma_{\gamma} < 5^{\circ}$ (currently $^{+35^{\circ}}_{-25^{\circ}}$) Improving hadronic theory, $B_{\rm B} \times f_{\rm B}^2$ and $|V_{\rm ub}|$ and a further improvement on CP in b $\rightarrow c\overline{c}s$ Or, measure angles in a different ways...

γ from tree only: $B \rightarrow DK^{(*)}, B_s \rightarrow D_s K$ γ from tree+penguin $B \rightarrow \pi \pi \oplus B_s \rightarrow KK \oplus U$ -spin β from box only (almost) $B \rightarrow J/\psi K_s$ β + γ from tree+penguin+box $B \rightarrow \pi \pi, \rho \pi, \rho \rho$



Or, look for $\not C \not P$ where Standard Model predict small effect

 $B_d \rightarrow \rho^0 \gamma$ box + b $\rightarrow d\gamma$ penguin $B_s \rightarrow \phi \gamma$ box + b \rightarrow sy penguin CP asymmetry = 0if t quark dominates in the loop $\operatorname{Im}(\frac{q A}{p A}) = \operatorname{Im}[\frac{(V_{tb}V_{ti}^{*})^2 V_{tb}^{*}V_{ti}}{|V_{tb}V_{ti}^{*}|^2 V_{tb}V_{ti}^{*}}] = 0$ i = d or s(B_s better valid) $B_s \rightarrow J/\psi \phi$ box + b \rightarrow c tree $\operatorname{Im}(\frac{q A}{n A}) = \operatorname{Im}[\frac{(V_{tb}V_{ts}^{*})^2 V_{cs}^{*}V_{cb}}{|V_{tt}V_{ts}^{*}|^2 V_{cs}V_{cb}^{*}}] = 2\lambda^2 \eta$

but New Physics in loop may make them large...

Or in a more subtle ways...

different γ , Z⁰ polarization may appear

3) Some LHCb B physics sensitivity

Reconstruction of B decay vertex with a good resolution

is essential to **reduce combinatorial background**: decay vertex: >1 well reconstructed tracks well reconstructed track =

- charged particle seen by vertex detector

- reconstructed particle from tracks measured by vertex detector $D^0(\rightarrow K^-\pi^+)$, $D_s(K^+K^-\pi^+)$, etc.

examples are

$$B_{(s)}^{0} \rightarrow l^{+}l^{-}, h^{+}h^{-}, ..., B_{s}^{0} \rightarrow D_{s}(\rightarrow K^{+}K^{-}\pi^{-}) \pi^{+}$$

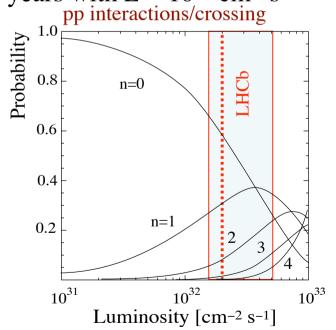
 π^{0} and γ may be **associated** to a reconstructed vertex (if not too many) $B^{0} \rightarrow K^{*0}(K^{+}\pi^{-})\gamma, \rho^{0}(\rightarrow\pi^{+}\pi^{-})\pi^{0}$, etc. are possible **but not** $B^{0} \rightarrow K_{S}\pi^{0}, \rho^{+}(\rightarrow\pi^{+}\pi^{0})\pi^{0}, \pi^{0}\nu\nu$, etc. $B^{+} \rightarrow \mu^{+}\nu, K^{+}\nu\nu, \tau^{+}\nu$

LHC is a **b** factory! ("**b**" not "B") B^0 , B⁺, B_s, B_c, b-baryons:

Expected fractions ~ 40 : 40 : 10 : 0.1 : 10 %

	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$	pp→bbX ($\sqrt{s} = 14$ TeV, $\Delta t_{\text{bunch}} = 25$	ns)
	PEPII, KEKB	LHC (LHCb, ATLAS, CMS)	
Production $\sigma_{b\overline{b}}$	1 nb	~500 µb	
Typical bb rate	10 Hz	100–1000 kHz	
bb purity	~1/4	$\sigma_{b\bar{b}}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !	$\mathbf{\hat{)}}$
Pileup	0	0.5–5	
b-hadron types	${ B^+ B^- (50\%) \over B^0 \overline B^0 (50\%) }$	B^+ (40%), B^0 (40%), B_s (10%) B_c (< 0.1%), b-baryons (10%)	
b-hadron boost	Small	Large (decay vertexes well separated)	(\cdot)
Production vertex	Not reconstructed	Reconstructed (many tracks)	
Neutral B mixing	Coherent B ⁰ B ⁰ pair mixing	Incoherent B ⁰ and B _s mixing (extra flavour-tagging dilution)	
Event structure	$B\overline{B}$ pair alone	Many particles not associated with the two b hadrons	\heartsuit

Luminosities


• LHC machine, pp collisions at $\sqrt{s} = 14$ TeV:

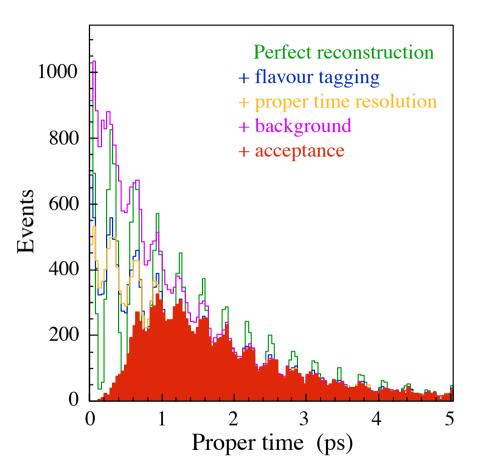
– design luminosity $L = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, bunch crossing rate = 40 MHz

– average non-empty bunch crossing rate f = 30-32 MHz

– Pileup:

- n = number of inelastic pp interactions occurring in the same bunch crossing
- Poisson distribution with mean $\langle n \rangle = L\sigma_{inel}/f$, with $\sigma_{inel} = 80$ mb
- $\langle n \rangle = 25$ at 10^{34} cm⁻²s⁻¹ \rightarrow not good for B physics (except B_s $\rightarrow \mu\mu$?)
- ATLAS and CMS
 - B physics in the early stage of the LHC operation ~3 years with $L = 10^{33}$ cm⁻²s⁻¹
- At LHCb:
 - -L tuneable by adjusting final beam focusing
 - Choose to $<L> \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} \text{ (max. } \sim 5 \times 10^{32} \text{)}$
 - Clean environment: <*n*>=0.5
 - Less radiation damage
 - Will be available from "first" physics run
- A "standard" year
 - In one "nominal year" = 10^7 s:
 - At LHCb 2 fb⁻¹ of data, 10¹² bb pairs produced
 - At ATLAS/CMS 10 fb⁻¹ of data

Flavour tag



LHCb				
Tag	$\varepsilon D^2 = \varepsilon (1 - 2w)^2$			
Opposite µ	0.7% - 1.8%			
Opposite e	0.4%-0.6%			
Opposite K	1.6%-2.4%			
Opposite Q _{vtx}	0.9%-1.3%			
Same side π (B ⁰)	0.8%-1.0%			
Same side K (B _s)	2.7%-3.3%			
Combined (B ⁰)	4%-5%			
Combined (B _s)	7%–9%			

One of the first physics goals: Confirm the CDF observation of B_s-B_s oscillation with much higher significance!

 $B_s → D_s^- π^+$ Plot made for 1 year of data (80k selected events, LHCb) for $\Delta m_s = 20 \text{ ps}^{-1}$ ⇒ a month of data is enough Important input to control the flavour tag performance

Measurement of sin 2β is not a central physics goal of LHCb (known well) but will be an important check of CP analyses e.g. tagging dilution, detector asymmetry... + can search for direct CP violating term $\propto \cos \Delta m_{\rm d} t$ Expect 216k reconstructed $B^0 \rightarrow J/\psi K_s$ events/year Precision $\sigma_{\text{stat}}(\sin 2\beta) \sim 0.02$, i.e. $\sigma_{\text{stat}}(\beta) \sim 0.6^{\circ}$ in one year $(10^7 \text{sec}, 2\text{fb}^{-1})$ B⁰ mass resolution 10 MeV 0.2 A_CP -0.2 $K \rightarrow \phi K_s$ is a difficult channel for LHCb: -0.4 $B^0 \rightarrow J/\psi K_s$ due to small $p_0(K)$ from ϕ , small ε_{trig} and S/B -0.6 $A_{\rm CP}(t)$ (background subtracted) Annual yield: 0.8k, B/S<2.4 (preliminary) Scaling of 1 year sensitivity from $J/\psi K_s$

 $\sigma(\sin 2\beta_{eff}) \sim 0.4.$

8

Proper time (ps)

9

10

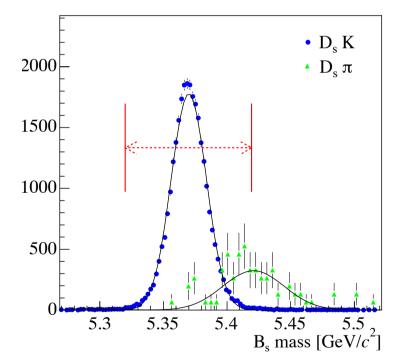
 $B_s → J/ψ φ$ is the B_s counterpart of $B^0 → J/ψ K_s$ CP asymmetry measures $φ_s$, the phase of B_s oscillation In Standard Model $φ_s$ is small: $φ_s = -2λ^2η ~ -0.04$ → sensitive probe for new physics

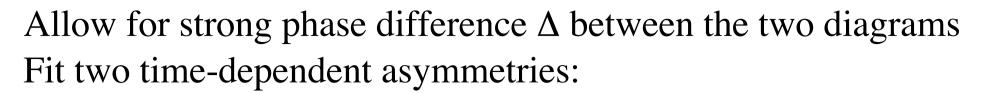
Final state is admixture of CP-even and odd contributions \rightarrow angular analysis of decay products required $L(t) = (1-R_{-}) L_{+}(t) (1+\cos^{2}\theta_{tr})/2 + R_{-} L_{-}(t) (1-\cos^{2}\theta_{tr})$ Fit for $\sin\phi_{s}$, R_{-} and $\Delta\Gamma_{s}/\Gamma_{s}$

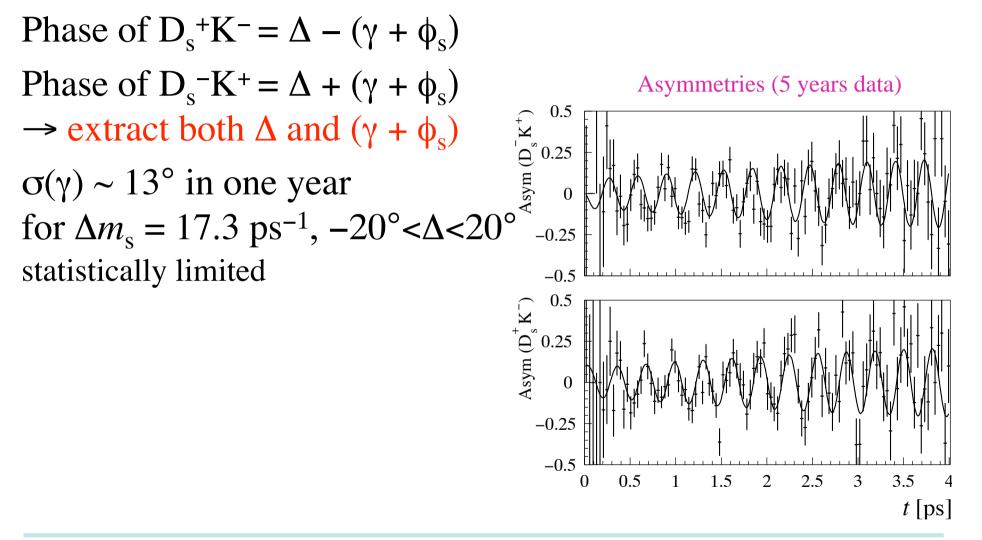
131k signals/year (10⁷sec) in LHCb $\sigma_{\rm m} = 14 \text{ MeV}/c^2$, B/S = 0.12 $\sigma_{\tau} = 36 \text{ fs}$ $\sigma(\sin\phi_{\rm s}) \sim 0.023$, $\sigma(\Delta\Gamma_{\rm s}/\Gamma_{\rm s}) \sim 0.01$ ($\Delta m_{\rm s} = 17.5 \text{ ps}^{-1}$)

Including $B_s \rightarrow J/\psi\eta$, $\eta_c \phi$, $D_s D_s$ will increase sensitivity somewhat: only ~ 21k events/year, but pure CP state

φ_{tr}

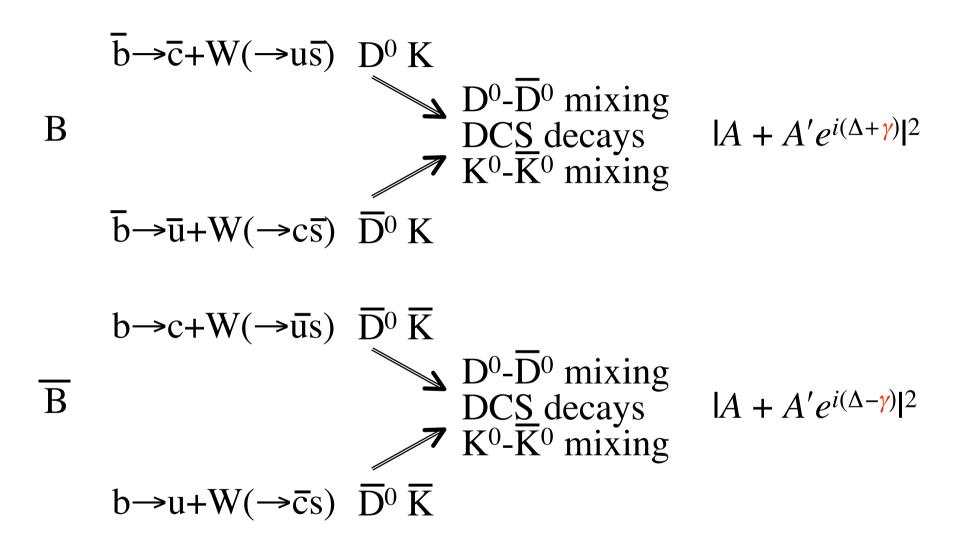

 $B_s \rightarrow D_s^-K^+$ and $\overline{B}_s \rightarrow D_s^+K^-$ (b \rightarrow u transition, BR ~ 7 × lower) both tree decays, which interfere via B_s mixing

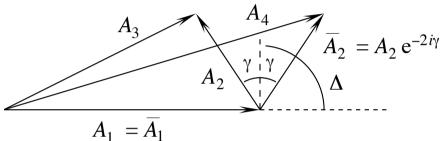

CP asymmetry measures $\gamma + \phi_s$ Very little theoretical uncertainty, insensitive to new physics


 ϕ_s will be determined using $B_s \rightarrow J/\psi \phi$ decays \rightarrow extract γ

 $B_s → D_s^- π^+$ gives background to $D_s K$ (BR ~ 12 × higher) Suppress using PID → residual contamination only ~ 10%

5.4k signal/year (10⁷sec, 2fb⁻¹) S/B (from bb) > 1 (at 90% CL) (only 1 bkg event in wider $M_{\rm B}$ window)





 $B \rightarrow DK$ for γ measurement

Measure 6 decay rates: $B^0 \rightarrow \overline{D}{}^0K^{*0}$, D^0K^{*0} and $D^0{}_{CP}K^{*0}$ + CP conjugates, where $D^0{}_{CP} \rightarrow K^+K^-$ (or $\pi^+\pi^-$)

Appropriate construction of amplitudes allows both γ and strong phase Δ to be extracted [Gronau & Wyler, Dunietz]

Decays are self-tagging (through $K^{*0} \rightarrow K^+\pi^-$) and time integrated No penguin diagram contributing to the decay

Mode	Yield	S/B	LHCb annual yields
$B^0 \rightarrow \overline{D^0} (K^+\pi^-) K^{*0}$	3400	> 2.0	(for $\gamma = 65^\circ$, $\Delta = 0$)
$B^0 \rightarrow D^0 (K^- \pi^+) K^{*0}$	500	> 0.3	$\rightarrow \sigma(\gamma) \sim 8^{\circ}$
$B^0 \rightarrow D^0_{CP}(K^+K^-) K^{*0}$	600	> 0.3	$(55^{\circ} < \gamma < 105^{\circ}, -20^{\circ} < \Delta < 20^{\circ})$

Measure four decay rates, $B^+ \rightarrow (K^+\pi^-)_{D-mass} K^+$, $(K^-\pi^+)_{D-mass} K^+$ + CP conjugates

$$\begin{split} &\Gamma(B^{-} \to (K^{-}\pi^{+})_{D} K^{-}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} - \delta_{D}^{K\pi} - \gamma\right), \quad (1) \\ &\Gamma(B^{-} \to (K^{+}\pi^{-})_{D} K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} + \delta_{D}^{K\pi} - \gamma\right), \quad (2) \quad \sim 60k \text{ events} \\ &\Gamma(B^{+} \to (K^{+}\pi^{-})_{D} K^{+}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} - \delta_{D}^{K\pi} + \gamma\right), \quad (3) \quad \sim 0.5k \text{ events} \\ &\Gamma(B^{+} \to (K^{-}\pi^{+})_{D} K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} + \delta_{D}^{K\pi} + \gamma\right), \quad (4) \end{split}$$

γ

 $\mathbf{r}_{\mathbf{B}}$

 $\bar{\delta_{\rm B}}$

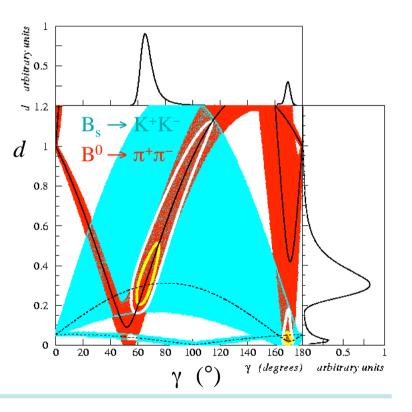
B decays

Weak phase diff.: Magnitude ratio: Strong phase diff.: D decays Magnitude ratio: $r_D^{K\pi}$ Strong phase diff.: $\delta_D^{K\pi}$

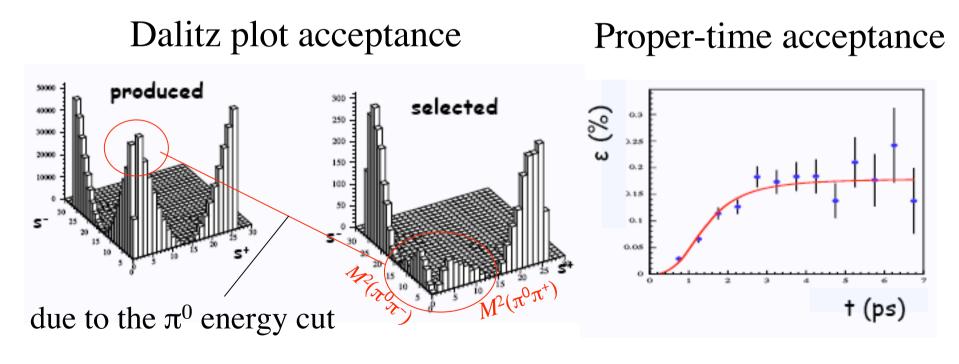
> hope to get information from CLEO-c

 $\sigma(\gamma) \sim 4^{\circ}-13^{\circ}$ in 1 year

Using $(K_S \pi^+ \pi^-)_{D-mass}$ under investigation

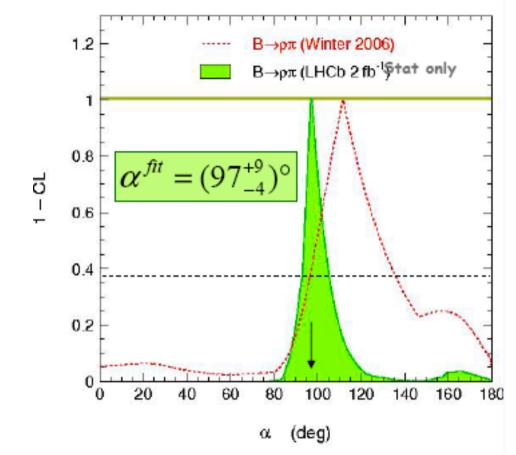

Time-dependent CP asymmetries for $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

 $A_{\rm CP}(t) = A_{\rm dir} \cos(\Delta m t) + A_{\rm mix} \sin(\Delta m t)$ $A_{\rm dir}$ and $A_{\rm mix}$ depend on weak phases γ and $\phi_{\rm d}$ (or $\phi_{\rm s}$), and on ratio of penguin to tree amplitudes = $d e^{i\theta}$

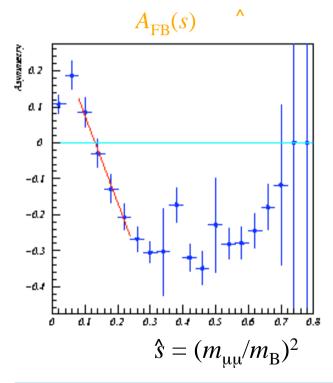

Under U-spin symmetry [Fleischer] (interchange of d and s quarks)

 $d_{\pi\pi} = d_{KK}$ and $\theta_{\pi\pi} = \theta_{KK}$ \rightarrow 4 measurements, 3 unknowns (taking $\phi_s \& \phi_d$ from other modes) \rightarrow can solve for γ

26k $B^0 \rightarrow \pi^+\pi^-$ events/year (LHCb) 37k $B_s \rightarrow K^+K^- \rightarrow \sigma(\gamma) \sim 5^\circ$ Uncertainty from U-spin assumption Sensitive to new physics in penguins



Time-dependent Dalitz plot analysis of $B^0 \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \pi^0$ permits extraction of α along with amplitudes + strong phases [Snyder & Quinn] Annual yield ~ 14k events, B/S < 0.8 (90% CL)



Complicated 11-parameter fit, studied with toy MC Statistical precision of $\sigma(\alpha) \sim_{-4^{\circ}}^{+9^{\circ}}$ achievable in one year

Assuming $Br(B^0 \rightarrow \rho^0 \rho^0) = 5 \times 10^{-7} \Rightarrow \sigma(Br)/Br=0.2$ in one year important input for $B \rightarrow \rho\rho$ studies

B⁰ → K^{*0}μ⁺μ⁻ suppressed decay (Δ*B* = 1 FCNC), BR~10⁻⁶ Forward-backward asymmetry in the μμ rest-frame $A_{FB}(s)$ is sensitive probe of new physics [Ali *et al*]

 $\frac{-0.2}{-0.4} \int_{0}^{-0.2} \int_{0}^{-0.4} \int_$

в. 9

(recent update expects 7700 events with a similar B/S)

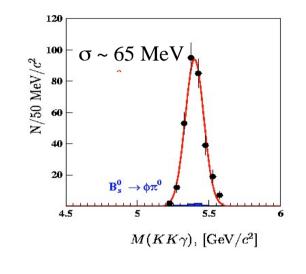
SUSY 11 (C, <0, C, >0)

SUSYL(C,<0)

Rare decay: BR ($B_s \rightarrow \mu^+\mu^-$) = 3.5×10⁻⁹ in Standard Model Sensitive to new physics, can be strongly enhanced in SUSY

LHCb expect ~30 selected signal events/year for SM BR Problem to estimate the background: no events selected from full background sample, but only corresponds to B/S < 6 (90% CL)

Prospect of significant BR measurement, even for SM value



Other channels

 $B_s \rightarrow \phi \gamma$

• some other interesting channels

	$N/2fb^{-1}$	B/S
$B{\rightarrow} K_{*0} \lambda$	35k	< 0.7
$B_s \rightarrow \phi \gamma$	9.3k	<2.4
$B_s \rightarrow \phi \phi$	1.2k	< 0.2

- Not yet systematically explored: B_c and b-baryon physics
- Recent assignment of high rate output streams from the HLT opens possibility of charm physics: > 10^8 reconstructed D*/year, and inclusive b trigger (*eg* on single μ) should give the equivalent of ~ 10^9 perfectly tagged b-hadron decays/year
- Although detector is under construction, still room to adjust trigger to select channels of topical interest

Systematics

Some potential sources of systematic uncertainty:

- B/B production asymmetry
- Charge-dependent detection efficiencies
- Background asymmetries
- Trigger bias (*eg* for flavour tag, proper-time acceptance)

Some experimental handles available:

- Control channels ($eg J/\psi K^*$ for $J/\psi K_s$, etc)
- Regular reversal of spectrometer B field
- Simultaneous fit of signal and background ($eg D_s K/D_s \pi$)
- Analysis of tagging performance in separate categories (*eg* triggered on B signal/triggered on other tracks)

High rate HLT unbiased samples will allow study using data

