B Physics at the Tevatron: Physics of the B_s Meson

- Introduction to B_s Physics
- Tevatron, CDF and DØ
- Selected B_s Results
- Conclusion

Matthew Herndon, July 2006

University of Wisconsin SLAC Summer Institute

Why B Physics?

- To look for physics beyond the Standard Model
 Standard Model fails to answer many fundamental questions
- Gravity not a part of the SM
- What is the very high energy behaviour?
 - At the beginning of the universe?
 - Grand unification of forces?
- Where is the Antimatter?
 - Why is the observed universe mostly matter?
- Dark Matter?
 - Astronomical observations of gravitational effects indicate that there is more matter than we see

Look for new physics that would explain these mysteries: SUSY, Extra Dimensions ...

M. Herndon

Searches For New Physics

- How do you search for new physics at a collider?
 - Direct searches for production of new particles
 - Particle-antipartical annihilation
 - Example: the top quark
 - Indirect searches for evidence of new particles
 - Within a complex process new particles can occur virtually
- Tevatron is at the energy frontier and

- So much data that we can look for some very unusual processes
- Where to look
 - Many weak processes involving B hadrons are very low probability
 - Look for contributions from other low probability processes Non Standard Model

Rare Decays, CP Violating Decays and Processes such as Mixing Present unique window of opportunity to find new physics before the LHC

Physics of the B_s Meson

- Look at processes that are suppressed in the SM
- $B_{s(d)} \rightarrow \mu^+ \mu^-$: FCNC to leptons
 - SM: No tree level decay, loop level suppressed
 - $BF(B_{s(d)} \to \mu^+\mu^-) = 3.5 \times 10^{-9} (1.0 \times 10^{-10})$
 - G. Buchalla, A. Buras, Nucl. Phys. B398,285
 - NP: 3 orders of magnitude enhancement ∝tan⁶β/(M_A)⁴
 Babu and Kolda, PRL 84, 228
- $B_s Oscillations$
 - SM: Loop level box diagram
 - Oscillation frequency can be calculated using electroweak SM physics and lattice QCD
 - NP can enhance the oscillation process, higher frequencies

Barger et al., PL B596 229, 2004, one example of many

• Related: $\Delta\Gamma$ and CP violation

Tevatron has many opportunities to look for New Physics

The Real Motivation

Because it's there

Mallory

A Little History

Everything started with kaons

- Flavor physics is the study of bound states of quarks.
- Kaon: Discovered using a cloud chamber in 1947 by Rochester and Butler.
- Could decay to pions and had a very long lifetime.
 10⁻¹⁰ sec

- Bound state of up or down quarks with with a new particle: the strange quark!
 - Needed the weak force to understand it's interactions.
 - Neutron kaons were some of the most interesting kaons

Rich ground for studying new physics

 K_0

Physics of Neutral Mesons

- New physics(at the time) of neutral particles and antiparticles
- K^0 and \overline{K}^0
- Interacted differently with weak and strong force. Different eigenstates
 - Strong force quark eigenstates: K^0 and \overline{K}^0
 - Weak force mass and CP eigenstates: K^0_S and K^0_L
- The Schrödenger equation
 - H not diagonal
 - K^0 and $\overline{K^0}$ not mass eigenstates
- Treat the particle and antipaticle as one two state system(Gellman, Pais)
 - $$\begin{split} |K_1\rangle &= \frac{1}{\sqrt{2}} (|K_0\rangle |\bar{K}_0\rangle) \\ |K_2\rangle &= \frac{1}{\sqrt{2}} (|K_0\rangle + |\bar{K}_0\rangle) \\ \text{New states mass eigenstates} \end{split} \begin{array}{ll} CP|K^0\rangle &= -|\bar{K}^0\rangle \text{ and } CP|\bar{K}^0\rangle &= -|K^0\rangle: \\ CP|K_1\rangle &= +|K_1\rangle & \text{CP even} \\ CP|K_2\rangle &= -|K_2\rangle & \text{CP odd} \\ K_8^0 &= K_1 \to \pi\pi & K_L^0 &= K_2 \to \pi\pi\pi \end{split}$$
 - $\Delta m = 2M_{12}$, width difference $\Delta \Gamma$, also predicted conversion of matter to antimatter SSI 2006 M. Herndon

Weak force violated C and P thought to conserve CP

$$i\frac{\partial}{\partial t}\psi = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2}\begin{pmatrix} \Gamma & 0 \\ 0 & \Gamma \end{pmatrix}\psi$$

Neutral Kaons

Observation of Long-Lived Neutral V Particles*	1954: Mixing Predicted	k
K. LANDE, E. T. BOOTH, J. IMPEDUGLIA, AND L. M. LEDERMAN, Columbia University, New York, New York AND W. CHINOWSKY, Brookhaven National Laboratory, Upton, New York (Received July 30, 1956) PR 103, 1901 (1956)	1956: CP Eigenstates	Observed
	1964: CP Violation Ob	served
PHYSICAL REVIEW .VOLUME 97, NU	JMBER 5 MARCH 1, 1955	
Behavior of Neutral Particles und M. GELL-MANN,* Department of Physics, Columbia AND A. PAIS, Institute for Advanced Study, (Received November 1)		
VOLUME 13, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JULY 1964		New Physics in a rare decay:
EVIDENCE FOR THE 2π DECAY OF THE K ₂ ⁰ MESON* [†] J. H. Christenson, J. W. Cronin, [‡] V. L. Fitch, [‡] and R. Turlay [§] Princeton University, Princeton, New Jersey (Received 10 July 1964)		CP violating K _L (odd)→2π(even)
Very Rare decays observed in t ssi 2006	the Kaon system: M. Herndon	→ π⁺π⁻) = 2.1x10 ⁻³ → μ⁺μ⁻) = 7.3x10 ⁻⁹ 8

B_s CKM Physics

Our knowledge of the flavor physics can be expressed in the CKM matrix

Translation between mass(strong) and flavor(weak) eigenstantes

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ud} & V_{is} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
Also in higher

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$
Unitarity relationship for b quarks
$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$
Unitarity relationship for b quarks

 $\frac{\Delta \Gamma B_s}{\Delta m_s} = 3.9 \times 10^{-3}$

Some theoretical errors cancel out in the ratio

(1.0)

Several important *B*_s

CKM Measurements

M. Herndon

 Δm_d

Neutral **B** Mesons

- The B^0 and B_s meson
 - Very interesting place to look for new physics(in our time)
 Higgs physics couples to mass so *B* mesons are interesting
 - Same program. Rare decays, CP violation, oscillations
- First evidence for *B* meson oscillations
 How the *B_s* meson was found
 - 1987: UA1 Integrated mixing measurement
 - χ: Compare charges of leptons from two B decays: opposite(unmixed) same(mixed)
 - 1987: Argus measured
 *B*₀ meson mixing frequency
 - UA1 and Argus measurements disagreed!

h

d

 $ar{\chi}=f_d\chi_d+f_s\chi_s=0.18f_d+0.50f_s$

B_s Oscillations

- With the first evidence of the B_s meson we knew it oscillated fast.
 - How fast has been a challenge for a generation of experiments.

Run 2 Tevatron experiments built to meet this challenge

> 2.3 THz

 $\Delta m_s > 14.4 \text{ ps}^{-1} 95\% \text{ CL}$

CDF and DØ Detectors

- CDF Tracker
 - Silicon |η|<2, 90cm long, r_{L00} =1.3 1.6cm
 - 96 layer drift chamber 44 to 132cm

EXCELLENT TRACKING: MASS RESOLUTION

Triggered Muon coverage: |η|<1.0</p>

- DØ Tracker
 - Silicon and Scintillating Fiber
 - Tracking to |η|<2</p>

EXCELLENT TRACKING: EFFICIENCY

- New L0 on beam pipe
- Triggered Muon coverage: |η|<2.0 12

The Trigger

- Hadron collider: Large production rates
 - $\sigma(pp \to bX, |y| < 1.0, p_T(B) > 6.0 \text{GeV/c}) = ~30 \mu \text{b}, ~10 \mu \text{b}$
- Backgrounds: > 3 orders of magnitude higher
 - Inelastic cross section ~100 mb

TRIGGERS ARE CRITICAL

1 Billion B and Charm Events on Tape

Single and double muon based triggers and displaced track based triggers

The Tevatron

- 1.96TeV pp collider
 - Excellent performance and improving each year
 - Record peak luminosity in 2006: 1.8x10³²sec⁻¹cm⁻²

CDF/DØ Integrated Luminosity

- ~1fb⁻¹ with good run requirements through 2005
 - All critical systems operating including silicon
- Doubled data in 2005, predicted to double again in 2006

 B_s physics benefits from more data

M. Herndon

The Results!

- Combining together excellent detectors and accelerator performance
- Ready to pursue a full program of B_s physics
- Today...

 $B_s \rightarrow \mu\mu$ $\Delta\Gamma B_s$ and CP violation B_s Oscillations

$B_{s(d)} \rightarrow \mu^+ \mu^-$ Method

- Relative normalization search
 - Measure the rate of $B_{s(d)} \rightarrow \mu^+ \mu^$ decays relative to $B \rightarrow J/\psi K^+$
 - Apply same sample selection criteria
 - Systematic uncertainties will cancel out in the ratios of the normalization
 - Example: muon trigger efficiency same for J/ψ or $B_s \mu s$ for a given p_T

$B_{s(d)} \rightarrow \mu^+ \mu^-$ Method

M. Herndon

- Relative normalization search
 - Measure the rate of $B_{s(d)} \rightarrow \mu^+ \mu^$ decays relative to $B \rightarrow J/\psi K^+$
 - Apply same sample selection criteria
 - Systematic uncertainties will cancel out in the ratios of the normalization
 - Example: muon trigger efficiency same for J/ψ or $B_s \mu s$ for a given p_T

 $BR(B^+ \rightarrow J/\psi K^+) \bullet BR(J/\psi \rightarrow \mu^+\mu^-)$

SSI 2006

Discriminating Variables

4 primary discriminating variables

- Mass $M_{\mu\mu}$
 - CDF: 2.5 σ window: $\sigma = 25 MeV/c^2$
 - DØ: 2σ window: $\sigma = 90 MeV/c^2$
- DF λ=ct/ct_{Bs}, DØ L_{xy}/ σ Lxy
- $\Delta \alpha$: $|\phi_{B} \phi_{vtx}|$ in 3D
- Isolation: p_{TB}/(Σtrk + p_{TB})
- CDF, λ, Δα and Iso:
 used in likelihood ratio
- D0 uses optimized cuts
- Optimization
 - Unbiased optimization
 - Based on simulated signal and data sidebands

$B_{s(d)} \rightarrow \mu^+ \mu^-$ Search Results

CDF Result: 1(2) $B_{s(d)}$ candidates observed consistent with background expectation

 $BF(B_s \rightarrow \mu^+ \mu^-) < 1.0 \times 10^{-7} \text{ at } 95\% \text{ CL}$

 $BF(B_d \rightarrow \mu^+ \mu^-) < 3.0 \times 10^{-8} \text{ at } 95\% \text{ CL}$

Worlds Best Limits!

D0 Result: with 300pb⁻¹ 4 events.
 700pb⁻¹ still blind - expected limit:

 $BF(B_s \rightarrow \mu^+\mu^-) < 2.3 \times 10^{-7}$ at 95% CL

- CDF 1 B_s result: 3.0×10⁻⁶ PRD 57, 3811 1998
- BaBar B_d result: 8.3×10⁻⁸(90%) PRL 94, 221803 2005

Decay	Total Expected Background	Observed
CDF B _s	1.27 ± 0.36	1
CDF B _d	2.45 ± 0.39	2
D0 B _s	4+2.2 ± 0.7	4+??

New Physics in $\Delta\Gamma B_s$

• $\Delta \Gamma B_s$ Width-lifetime difference between eigenstantes

 $B_{s,Short,Light} \rightarrow CP even \qquad B_{s,Long,Heavy} \rightarrow CP odd$

New physics can contribute in penguin diagrams

$$\Delta \Gamma_{Bs}^{meas} = \Delta \Gamma_{Bs}^{SMCPCons} \bullet \cos(\phi^{SM} + \phi^{NP})$$

- Measurements
 - Directly measure lifetimes in $B_s \rightarrow J/\psi\phi$

Separate CP states by angular distribution and measure lifetimes

- Measure lifetime in B_s → K⁺ K⁻
 CP even state
- Search for $B_s \rightarrow D_s^{(*)} D_s^{(*)}$

CP even state May account for most of the lifetime-width difference

Many Orthogonal Methods!

$\Delta \Gamma B_s$ Method: $B_s \rightarrow J/\psi \phi$

- Directly measure lifetimes in $B_s \rightarrow J/\psi\phi$
 - Separate CP states by angular distribution and measure lifetimes
 - $A_0 = S + D$ wave $\rightarrow P$ even
 - $A_{\parallel} = S + D$ wave $\rightarrow P$ even
 - $A_{\perp} = P$ wave $\rightarrow P$ odd

• $B_{s,Short,Light} \rightarrow CP even$

• $B_{s,Long,Heavy} \rightarrow CP \ odd$

CP Violation will change this picture

$\Delta\Gamma B_s$ CP Violation Results

Allowing for CP Violation

 $\Delta \Gamma_{Bs}^{meas} = \Delta \Gamma_{Bs}^{SMCPCons} \bullet \cos(\phi^{SM} + \phi^{NP})$

 $\Delta \Gamma B_{\rm s} = 0.17 \pm 0.09 \pm 0.03 \, {\rm ps^{-1}}$

 $\phi = \phi^{\text{NP}} + \phi^{\text{SM}} = -0.79 \pm 0.56 \pm 0.01$

Combine with searches for CP
 violation in semileptonic *B* decays

 $\Delta \Gamma B_{\rm s} = 0.15 \pm 0.08 \pm 0.03 \ {\rm ps^{-1}}$

 $\phi = \phi^{\text{NP}} + \phi^{\text{SM}} = -0.56 \pm 0.40 \pm 0.01$

• Consistent with SM $\Delta\Gamma$ B_s = 0.10 ± 0.03 ϕ SM = -0.03 - +0.005 SSI 2006 U. Nierste hep-ph/0406300

B_s Mixing: Overview

• Measurement of the rate of conversion from matter to antimatter: $B_s \Leftrightarrow \overline{B_s}$

Determine b meson flavor at production, how long it lived, and flavor at decay

B_s Mixing: Signals

- Fully reconstructed decays: $B_s \rightarrow D_s \pi(2\pi)$, where $D_s \rightarrow \phi \pi$, K^*K , 3π
- Semiletonic decays: $B_s \rightarrow D_s IX$, where $I = e, \mu$

B_s Mixing: Flavor Tagging

- D0 Opposite side tag(OST): Combined Jet finding, b vertex and lepton tag
 - Information combined in a likelihood ratio
- CDF OST: Separate Jet with b vertex and lepton tags
 - Hierarchy of tags with most accurate tag taken first
- CDF Same side tag(SST): Kaon PID
- Taggers calibrated in data where possible
 - OST tags calibrated using B^+ data and by performing a B^0 oscillation analysis
 - SST calibrated using MC and kaon finding performance validated in data

Tag	Performance(εD²)
D0 OST	2.48 ± 0.21 ± 0.07%
CDF OST	1.5 ± 0.01%
CDF SST	3.5 ± 0.87%(4.0%)

B_s Mixing: Proper Time Resolution

- Measurement critically dependent on proper time resolution
 - Full reconstructed events have excellent proper time resolution
 - Semileptonic events have worse resolution

• Momentum necessary to convert from decay length to proper time

B_s Mixing: DØ Results

Key Features	Result
Sen: 95%CL	14.1ps ⁻¹
Sen: σ _A (@17.5ps ⁻¹)	0.91
A/o _A	2.5
Prob. Fluctuation	5%
Peak value: ∆m _s	19ps⁻¹

Limits: 17-21ps⁻¹@90CL

One experiment with more sensitive than a whole generation of experiments!

PRL 97, 021802 2006

SSI 2006

B_s Mixing: CDF Results

0.2% is 3σ evidence: Let's measure Δm_s and V_{ts}

Accepted by PRL

SSI 2006

B_s Mixing: CKM Triangle

30

B_s Results - New Physics

- Many new physics models that predict observable effects in flavor physics
- Consider a SUSY GFV model: general rather than minimal flavor violation
 - Makes predictions for Non Standard model $BF(B_s \rightarrow \mu^+\mu^-)$ and Δm_s
 - Basically corrects quark mass terms with sqark-gluino loop terms in a general way

hep-ph/0604121

• Size of effects depends on $tan\beta$ and m_A

B_s Physics Conclusion

- Tevatron making large gains in our understanding of B_s Physics
- Concentrating on areas where there might be hints of new physics
- New stringent limits on rare decays:

 $BF(B_s \rightarrow \mu^+ \mu^-) < 1.0 \times 10^{-7} \text{ at } 95\% \text{ CL}$

Precise measurement of $\Delta \Gamma B_s$

 $\Delta \Gamma B_{\rm s} = 0.12 \pm 0.08 \pm 0.03 \ {\rm ps^{-1}}$

First measurements of Δm_s

Factor of 30 improvement over run 1

And first look at the CP violating phase

 $\Delta m_s = 17.31 + 0.33 + 0.03 (stat) \pm 0.07 (syst) ps^{-1}$

Study of the B_s meson well on its way

Signal at 3 σ level. Signal seen by both experiments