

Detectors at the

Large Hadron Collider

SLAC Summer Institute, 2006

Jos Engelen

CERN

with special thanks to Jim Virdee

Quote (mid 1980's): 'we think we know how to build a high energy, high luminosity hadron collider – we don't have the technology to build a detector for it

for a high energy, high luminosity electronpositron collider the situation is just the opposite '

The LHC detectors are radically different from their predecessors at the SppS collider, LEP, SLC, HERA, Tevatron, etc.

They are designed for a luminosity of 10^{34} cm⁻²s⁻¹ for pp collisions at an energy of 14 TeV

Detectors need to be fast, radiation hard (also the electronics) and big

pp collisions at 7+7 TeV

Luminosity L: collision rate normalized to cross section 10³⁴ cm⁻²s⁻¹

 $k_b f = 40$ MHz: bunch crossing frequency, i.e. 25 ns between bunches

PbPb collisions at 82x7 + 82x7 TeV (208 + 208 nucleons)

The Large Hadron Collider - experiments

Two 'general purpose' 4π detectors are in preparation ATLAS and CMS

pp collisions at high L; some capabilities for PbPb

One dedicated PbPb detector with some capabilities for pp ALICE

One dedicated detector for studying B mesons (CP violation; rare decays), prolifically produced in the forward (backward) hemisphere

LHCb

$$\sigma_{b\bar{b}} \approx 500\,\mu b \qquad gg \to b\bar{b}$$

Furthermore:

precision (1%) measurement of total cross section (and more) TOTEM ($\sigma_{tot} \sim 100$ mb) $\sigma_{tot} = \frac{16 \pi}{1 + \rho^2} \times \frac{(dN/dt)|_{t=0}}{N_{el} + N_{inel}}$

study of forward production of π^0 s LHCf (LHC energy equivalent to 10^{17} eV beam on fixed target – cf cosmic rays)

search for magnetic monopoles Moedal

High Interaction Rate: $N=L\sigma = 10^{34} \times 100 \times 10^{-27}$

pp interaction rate 10⁹ interactions/s data for only ~100 out of the 40 million crossings can be recorded per sec

Level-1 trigger decision will take ~2-3 μ s

⇒ electronics need to store data locally (pipelining)

Large Particle Multiplicity

~ <20> superposed events in each crossing

 1000 tracks stream into the detector every 25 ns need highly granular detectors with good time resolution for low occupancy

⇒ large number of channels

High Radiation Levels

⇒ radiation hard (tolerant) detectors and electronics

At the LHC the SM Higgs provides a good benchmark to test the performance of a detector

Very good muon identification and momentum measurement trigger efficiently and measure sign of a few TeV muons

High energy resolution electromagnetic calorimertry $\sim 0.5\%$ @ E_T ~ 50 GeV

Powerful inner tracking systems factor 10 better momentum resolution than at LEP

Hermetic calorimetry good missing E_T resolution

(Affordable detector)

Charged particle moving in magnetic field B

Sagitta s

$$s = R - R\cos\frac{\theta}{2} \approx R\theta^2 / 8$$

$$p = 0.3BR$$

$$L = R\theta$$

$$s = \frac{0.3BL^2}{8p}$$

Units: Tesla, meter, GeV

Resolution on s determines resolution on p

$$dp / p = (p / F)ds$$
$$F = 0.3BL^2 / 8$$

ds depends on resolution tracking devices (technology!) 10 μ (Si) – 100 μ (Drift)

F is also determined by state of the art technology:
large magnets with high fields (superconducting)
1 – 4 Tesla

Large *L* better than high *B*, but the volume of the detector grows as L^3 1 – few Meters

Complementary Conception

ATLAS

 $\begin{array}{l} \mbox{Standalone μ momentum} \\ \mbox{measurement; safe for} \\ \mbox{high multiplicities;} \\ \mbox{Air-core toroid} \\ \mbox{Property: σ_p flat with η} \end{array}$

CMS Measurement of momentum in tracker and B return flux; Solenoid with Fe flux return Property: muon tracks point back to vertex (not as in drawing)

Convenient variable: 'one particle phase space is uniform in rapidity'

inelastic particle production shows a 'rapidity plateau' (from ~-3 to +3 at LHC)

rapidity has a geometrical interpretation \rightarrow detector 'granularity' corresponding to fixed rapidity intervals (and similarly for ϕ , azimuthal angle, intervals) (cf. calorimeter cell size)

$$d^{4}P\delta(E^{2} - P^{2} - m^{2}) = d\vec{P} / E = P_{T}dP_{T}d\phi dy$$
$$dy = dP_{//} / E$$

$$y = \frac{1}{2} \ln \frac{E + p_{//}}{E - p_{//}}$$

For E >> m: $y \approx \eta = -\ln \tan \theta / 2$

The ATLAS Detector

A Toroidal LHC ApparatuS

Compact Muon Solenoid

SLAC Summer Institute, July 18, 2006

Choice of the Magnets

Design goal: measure 1 TeV muons with 10% resolution

ATLAS: ~0.6T over 4.5 m \rightarrow s=0.5mm \rightarrow need σ_{s} =50 μm

• $B \sim \mu_0 n I \rightarrow n I = 2x 10^7 At$

 With 8 coils, 2x2x30 turns: I=20kA (superC)

 Challenges: mechanics, 1.5GJ if quench, spatial & alignment precision over large surface area

> CMS: B=4T (E=2.7 GJ) R=3 m but tracking only over 1.2 m s=0.22 mm Si tracking

B=µ₀nI; @2168
turns/m→ I=20kA (SuperC)
Challenges: 4-layer
winding to carry enough I,
design of reinforced superC
cable

Magnets

ATLAS

CMS

Factors that determine performance

Trackers at LHC

ATLAS

Pixels: ~ 2.3 m² of silicon sensors, 140 M pixels, 50x300 μm^2 , r = 4, 10, 13 cm

Si μ -strips : 60 m² of silicon sensors, 6 M strips, 4 pts, r = 30 - 50 cm Straws TRT: 36 straws/track, Xe-CO₂-CF₄ ϕ =4mm, r = 56 - 107 cm

CMS: Si pixels surrounded by silicon strip detectors **Pixels**: ~ 1 m² of silicon sensors, 40 M pixels, 150x150 μ m², r = 4, 7, 11 cm **Si** μ -strips : 223 m² of silicon sensors, 10 M strips, 12 pts, r = 20 - 120 cm

Calorimetry

Energy and position measurement of
photons, electrons, positrons – electromagnetic calorimetry e.m. showers thru Bremsstrahlung, pair creation, etc.
Energy E ~ N charged 'ionizing' (or generating scintillation, Cerenkov) light.

$$\Delta E \,/\, E = k \,/\, \sqrt{E} \oplus \dots$$

k smaller for more samplings (cf. homogeneous calorimeters)

Calorimeter depth determined by radiation length. Approximately:

$$X_0 = \frac{716.4A}{Z(Z+1)\ln(287/\sqrt{Z})}$$
 [g o

Granularity determined by Molière radius (lateral shower size)

$$\rho_{M} = 21.2 X_{0} / \varepsilon_{c}$$

Calorimetry

hadrons Energy resolution scales as for e.m. calorimetry but with k typically larger Calorimeter depth determined by interaction length Courser granularity than e.m.

$$\lambda_{
m int} \propto 1/\sigma$$

• jets

Some examples of materials:

	<i>X_o</i> [cm]	λ_{int} [cm]
Fe	1.76	16.8
Pb	0.56	17.0
PbWO ₄	0.89	18.0

Μ

In several scenarios moderate mass narrow states decaying into photons or electrons are expected:

SM : intermediate mass $H \rightarrow \gamma\gamma$, $H \rightarrow Z Z^* \rightarrow 4e$ MSSM: $h \rightarrow \gamma\gamma$, $H \rightarrow \gamma\gamma$, $H \rightarrow Z Z^* \rightarrow 4e$

 E_2

In all cases the observed width (cf. signal over background) will be determined by the instrumental mass resolution. Need : good e.m. energy resolution good photon angular resolution good two-shower separation capability $M^2 = 2E_1E_2(1 - \cos\theta)$ $dM / M \propto d\cos\theta / \cos\theta$

 $dM / M \propto dE / E$

$$tg(\theta_{\min}/2) = M/2(E_1 + E_2)$$

Jet energy resolution

- Limited by jet algorithm, fragmentation, magnetic field and energy pileup at high luminosity
- Can use the width of jet-jet mass distribution as a figure of merit
 - Low p_t jets: W, Z \rightarrow Jet-Jet, e.g. in top decays
 - High p, jets: W', Z' \rightarrow Jet-Jet
- Fine lateral granularity (≤ 0.1) high p_t W's, Z's

Missing transverse energy resolution

- · Gluino and squark production
 - Forward coverage up to $|\eta|$ = 5
 - Hermeticity minimize cracks and dead areas
 - Absence of tails in the energy distribution is more important than a low value for the stochastic term
- Good forward coverage is also required to tag processes initiated vector boson fusion

CMS Calorimeters

ECAL: PbWO₄ crystals

Parameter	Barrel	Endcap
ղ coverage Granularity (Δη×Δφ)	η < 1.48 0.0175×0.0175	1.48 < η < 3.0 varies in n
Crystal Dims. (cm ³)	2.18×2.18×23	2.85×2.85×22
Depth in X ₀	25.8	24.7 (+3X ₀)
No. of crystals	61,200	14,950
Crystal Volume (m ³)	8.14	3.04
Photodetector	APDs	VPTs
Modularity	36 supermodules	4 Dees

HCAL

Central Region $(|\eta| < 3)$: Brass/Scintillator with WLS fibre readout, projective geometry, granularity $\Delta \eta x \Delta \phi = 0.0875 \times 0.0875$ **Forward Region** $(3 < |\eta| < 5)$: Fe/Quartz Fibre, Cerenkov light

ATLAS Calorimeters

ECAL

Accordion Pb/LAr $|\eta| < 3.2, 3 \text{ samplings}$ S1: $\Delta \eta x \Delta \phi = 0.025 \times 0.1$ S2: $\Delta \eta x \Delta \phi = 0.025 \times 0.025$ S3: $\Delta \eta x \Delta \phi = 0.05 \times 0.025$

HCAL

Barrel: Fe/Scintillator with WLS fibre readout 3 samplings - $\Delta\eta x \Delta \phi = 0.1 x 0.1$ **Endcap**: Fe/LAr **Forward**: W/LAr 3.1< $|\eta|$ <4.9 $\Delta\eta x \Delta \phi = 0.2 x 0.2$

Muon identification should be easy at L ~ 10³⁴ cm⁻² s⁻¹

Muons can be identified inside jets

b-tagging, control efficiency of isolation cuts

Factors that determine performance

Level-1 Trigger

rate from genuine muons (b,c $\rightarrow \mu X$) is very high a must make a p_T cut with v. high efficiency – flexible threshold (p_T in the range 5 – 75 GeV)

Pattern Recognition

hits can be spoilt by correlated backgrounds (δ 's, em showers, punchthrough) and uncorrelated ones (n's and associated photons)

Momentum Resolution

high momenta involved a high B.dl good chamber resolution (~ 100 μ m) and good alignment for low momenta precision comes from inner tracking

MD RPC MD T T G CSC CSC C 0 15 20 m

Precision chambers

Monitored Drift Tubes ($|\eta| < 2$) with a single wire resolution of 80 µm 1194 chambers, 5500m² Cathode Strip Chambers (2 < $|\eta| < 2.7$) at higher particle fluxes 32 chambers, 27 m² Each detector has 3 stations. Each station consists of 2-4 layers.

Trigger chambers

Resistive Plate Chambers ($|\eta| < 1.05$) with a good time resolution of 1 ns 1136 chambers, 3650 m² Thin Gap Chambers (1.05 < $|\eta| < 2.4$) at higher particle fluxes 1584 chambers, 2900 m²

4T

CMS Muon Detectors

Overview

21	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner part Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
TRACKER	Si pixels+ strips TRD \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Brass-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T < 10 \%$ at 1 TeV standalone; larger acceptance	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker
	SLAC Summer Institute, July 18,	2006 31

Extensive and in several cases very detailed studies exist

The general conclusion is that the detectors will allow the physics studies they were designed for (and even those they were not designed for)

Charged Track Reconstruction

Multiple Coulomb scattering adds an apparent deflection angle, i.e. apparent sagitta

$$\theta_{mlt} = \frac{13.6[\text{MeV}]}{\beta pc} Z \sqrt{\frac{L}{X_0}} \qquad \left(\frac{dp}{p}\right)_{mlt} \approx 0.05 \frac{1}{B\sqrt{LX_0}}$$

Use light material in trackers

cf also CMS muon spectrometer 'stand alone'

Jet Reconstruction

0

0

0.1

el noise o

 $1/\sqrt{E} (GeV^{-1/2})$

0.3

0.2

Classical 'cone' algorithm - jet built around a seed • parameters: E_T^{seed} cut, cone opening radius DR

ATLAS: W → jet-jet mass resolution

p _T ^W (GeV)	ΔR	σ_{LoL}	σ _{HiL} (GeV)
р _т <50	0.4	9.5	13.8
100 <p<sub>T<200</p<sub>	0.4	7.7	12.9
200 <p<sub>T<700</p<sub>	0.3	5.0	6.9

Event selection Trigger, DAQ, Off-line

Production Cross-sections

At sqrt(s)=14 TeV		
σ_{tot}	~ 105 mb	
σ _{elastic}	~ 28 mb	
o _{diffractive}	~ 12 mb	
σ_{inel}	~ 65 mb	

Evt rate

- ~ 12 mb ~ 65 mb
- $= L.\sigma = 10^{34} \times 65 \ 10^{-27} / s$ $= 6.5 \times 10^8 / s$

Operating Conditions For every 'good' event containing a Higgs decay there are ~ 20 extra 'bad' minimum bias

(10¹⁶ bit/sec)

Trigger Architectures

Multilevel trigger and readout systems

Data Acquisition

Physics Selection at LHC

- A few pictures and some text to illustrate the status of the LHC experiments
- Detectors are ready or close to completion
- Largest activity right now: Integration & Installation

Simulation of a $H \rightarrow \mu\mu$ ee event in ATLAS

Construction status: on track for collisions towards the end of 2007

Calorimeters

All three calorimeter cylinders are installed in the underground cavern, and the gradual commissioning of them has started

→ The full calorimeter system is to be operational spring 07

LAr EM calorimeter *in situ* at the centre of the ATLAS detector, having reached LAr temperature end of May 06

Cool-down history of barrel

Complete end-cap calorimeter cylinder

the barrel toroid region

(LAr and Tiles) just before insertion into

Inner Detector

Pixel detector: recovery from cooling pipe leaks in the barrel proceeding according to schedule

Silicon tracker (SCT): full system preassembled

Transition Radiation Tracker (TRT): services Integration on fully preassembled system is being finalized

 \rightarrow Installation of the complete system on time for June 07

Completely assembled barrel TRT and SCT

Cosmic rays recorded in barrel TRT and SCT in the surface building clean room SR1

ummer Institute, July 18, 2006

Completely integrated Pixel end-cap with 6.6 M channels at CERN

Magnet System

The Barrel Toroid is installed, and is being pumped down, followed by full excitation tests in July/Aug 06

The End-Cap Toroids are in the final integration phase, on time for the cavern (end of 2006)

The solenoid has been tested already *in situ* at reduced current, awaiting the closure of the calo end-caps

Barrel Toroid before insertion of the barrel calorimeter on 4th November 2005

Muon Chambers

All chambers are built, installation in the barrel region is in full swing (complete before end 2006), and end-cap sectors are being pre-assembled in Hall 180 (on the critical path for installation by summer 2007)

Installation of barrel muon chambers

nstitute, July 18, 2006

The CMS Detector

CMS Assembly at Point 5 for Slice Test

Solenoid is cold HB inserted in coil HCAL Endcap 2 ECAL SM CSCs Tracker Components DT + RPCs

The 4 Tesla s.c. coil is now cold, at liquid He temperature 4.5K.

- Tracker assembly progressing well. All parts (~220 m² of Si sensors) expected to be installed in Support Tube (by end06) for final commissioning and then transport to Point 5.
- 80% of barrel crystals delivered. 27/36 bare Supermodules (1700 xtals) assembled. 16 out of 36 SM integrated so far. Install 30 SM into HB before lowering. Endcap ECAL will be installed for 2008 physics run.
- HCAL source calibration complete. HCAL pre-calibrated to ~ 4%
- Over 3 out of 5 wheels worth of DT/RPC packages installed. > 90% of CSCs installed on endcap disks. Half of endcap RPCs installed.
- Commissioning with cosmics of large sub-parts (systems tests) has started. Cosmics have been recorded for all sub-detectors: TK, ECAL, HCAL and Muon system. Test a full slice of CMS in July-Sep 06.
- Start lowering disks and wheels in Oct06.
- CMS will be ready for first collisions in pilot physics run of 2007.

CMS Solenoid

Vacuum Tank welded (Nov Jan)

Coil Cooled to 4.5K in 25 days (Feb). Test on Surface (Jun-Aug)

Crystals delivery determines ECAL Critical Path.

Last ECAL Barrel crystal delivered February 2007.

Last ECAL Endcap crystal delivered January 2008.

Plan is to have ECAL BARREL completed for the pilot run in 2007 and to install ECAL ENDCAP and preshower for the first physics run in 2008.

EB Crystal Production in Russia: > 50,000 usable crystals (80%).

SLAC Summer Institute, July 18, 2006

LHCb pit

Magnet: commissioned, B field measurement completed Vertex Locator **VELO:** vacuum tank installed, sensor module production started **Outer Tracker:** module construction completed, support structure being installed Silicon Tracker: Inner Tracker and Trigger Tracker Si ladder production and support structure construction in progress **RICH:** RICH2 mechanics installed, RICH1 shielding box installed **Calorimeters:** Ecal and Hcal modules installed, Preshower ready for installation Muon: chamber production progressing, infrastructure in preparation **Trigger:** Level-O electronics production about to start

Planned to be ready for the first beam collisions

Weight: 10,000 tons

SLAC Summer Institute, July 18, 2006

30 Countries

Alice Status

Infrastructure (large structures, µ-absorbers, magnets,..)

installed and commissioned

Detector Construction

- completed: TPC, HMPID, PHOS, ZDC, Muon trigger, cosmic trigger array
- nearing completion: Muon tracking, TOF, TRD, ITS,

forward (V0, T0, PMD, FMD)

critical path: Silicon Vertex Detector (ITS)

Detector Installation

- precomissioning of all detectors on surface, started
- Installation:
 - Muon Spectrometer: June 06 to March 07
 - Central Barrel: Sept. 06 to April 07
- Installation after summer 2007: parts of TRD, TOF, PHOS

TOTEM Detectors

Physics

Which physics the first year(s)?

Expected event rates at production in ATLAS or CMS at $L = 10^{33}$ cm⁻² s⁻¹

Process	Events/s	Events for 10 fb ⁻¹	<u>Total</u> statistics <u>collected</u> at previous machines by 2007
$W \rightarrow e_V$	15	10 ⁸	10 ⁴ LEP / 10 ⁷ Tevatron
$Z \rightarrow ee$	1.5	107	10 ⁷ LEP
t tbar	1	107	10 ⁴ Tevatron
b bbar	10 ⁶	10 ¹² - 10 ¹³	10 ⁹ Belle/BaBar
H m=130 GeV	0.02	10 ⁵	?
gluino gluino m= 1 TeV	0.001	104	
Black holes m > 3 TeV (M _D =3 TeV, n=4)	0.0001	10 ³	

Already in first year, <u>large statistics</u> expected from:

- -- known SM processes \rightarrow understand detector and physics at $\sqrt{s} = 14$ TeV
- -- several New Physics scenarios

<u>Implications for light Higgs</u> (assuming the <u>same</u> luminosity/detector/analysis

	$qq \rightarrow WH \rightarrow \ell v bb$ $qq \rightarrow ZH \rightarrow \ell \ell bb$ $m_{H}=120 GeV$	gg→ H→ WW → $\ell \nu \ \ell \nu$ m _H =160 GeV
S(14)/S(2)	≈ 5*	≈ 30
B(14)/B(2)	≈ 25	≈ 6
S/B(14)/S/B(2)	≈ 0.2	≈ 3
S/√B(14)/ S/√B(2) ≈ 1	≈ 7

*Acceptance ~ 2 times larger at Tevatron (physics is more central, less initial-state g radiation)

EW cross-sections (e.g. qq \rightarrow W, Z, WH): LHC/Tevatron ~ 10 QCD cross-sections (e.g. tt, gg \rightarrow H): LHC/Tevatron \geq 100 (because of gluon PDF) \rightarrow cf HERA results

e/jet ~
$$10^{-3}$$
 $\sqrt{s} = 2 \text{ TeV}$
e/jet ~ 10^{-5} $\sqrt{s} = 14 \text{ TeV}$ p_T > 20 GeV

Standard Model Higgs

The LHC detectors are almost ready to meet the challenge they were designed to meet

LHC represents the 'next step' in high energy physics, a crucial step

The coming years will be very exciting!