Higher Order QCD Lecture 2

Lance Dixon, SLAC

SLAC Summer Institute The Next Frontier: Exploring with the LHC July 21, 2006

Lecture 2 Outline

- NLO
- NNLO

What is the state of the art?

Example of pure jet production

For W/Z/Higgs + jets, situation is similar or worse, if you count the W/Z/Higgs as a jet

L. Dixon, 7/21/06

NLO improves normalizations

Recent example (Higgs background)

FIG. 1: Tree level Feynman diagrams for $q\bar{q}' \rightarrow b\bar{b}W.$

Febres Cordero, Reina, Wackeroth, hep-ph/0606102

 $m_b = 0$ case: Ellis, Veseli, hep-ph/9810489; Campbell, Ellis, hep-ph/0202176

L. Dixon, 7/21/06

NLO also improves distributions

L. Dixon, 7/21/06

NLO challenges

- 1. Virtual 1-loop amplitudes with many external legs are very complicated; several new approaches being pursued, some more numerical, some more analytical Ellis, Giele, Zanderighi (2005-6); Binoth, Guillet, Heinrich, Pilon, Schubert (2005); Kramer, Nagy, Soper (2002-3); Berger, Bern, LD, Forde, Kosower (2005-6); ...
- Subtraction terms necessary to render finite the phase-space integration of real corrections – are very intricate to construct; integrations are time-consuming to perform to good numerical accuracy (though general formalisms have existed for a while)

Giele, Glover (1992); Giele, Glover, Kosower, hep-ph/9302225; Frixione, Kunszt, Signer, hep-ph/9512328; Catani, Seymour, hep-ph/9605323; Kosower, hep-ph/9710213

Virtual Corrections

Simplest case – virtual corrections for DY, DIS, or e⁺e⁻ annihiliation:

So simple because there is only one relevant scale, *s*₁₂

For multi-particle kinematics, even after color/helicity disentangling, there are enough kinematic variables to build very complicated results!

More complicated examples

 $Vq\bar{q}gg$

ggggg

L. Dixon, 7/21/06

Higher Order QCD: Lect. 2

 $V = W, Z, \gamma^*$

(-) INTRAC ((S) INT

Real radiation prototype: infrared cancellations in e⁺e⁻

Real radiation in general case

Cannot perform the phase-space integral analytically in $D=4-2\epsilon$, especially not for generic experimental cuts

Also can't do it numerically, because of $1/\epsilon^2$ poles

2 solutions:

- 1. Slice out singular regions of phase-space, with (thin) width s_{min} Perform integral there approximately. Rest of integral done numerically. Check cancellation of s_{min} dependence.
- Subtract a function that mimics the soft/collinear behavior of the radiative cross section, and which you can integrate (analytically). Integral of the difference can be done numerically.

Dipole formalism

Catani, Seymour, hep-ph/9602277, hep-ph/9605323

Popular (stable) version of the subtraction method

Build dipole subtraction function $D_{ij,k}$ for each pair of partons i,j that can get singular, and for each "spectator" parton k

$$\begin{aligned} \mathcal{D}_{ij,k}\left(p_{1},...,p_{m+1}\right) &= -\frac{1}{2p_{i} \cdot p_{j}} \\ & \cdot_{m} < 1,..,\widetilde{ij},..,\widetilde{k},..,m+1 |\frac{T_{k} \cdot T_{ij}}{T_{ij}^{2}} V_{ij,k} | 1,..,\widetilde{ij},..,\widetilde{k},..,m+1 >_{m} \end{aligned}$$

The D_{ij,k} multiply the LO cross section, at a boosted phase-space point:

$$\tilde{p}_{k}^{\mu} = \frac{1}{1 - y_{ij,k}} p_{k}^{\mu} , \quad \tilde{p}_{ij}^{\mu} = p_{i}^{\mu} + p_{j}^{\mu} - \frac{y_{ij,k}}{1 - y_{ij,k}} p_{k}^{\mu}$$

L. Dixon, 7/21/06

Figure 3: Effective diagrams for the different dipole formulae introduced in Sect. 5. The blobs denote the m-parton matrix element. Incoming and outgoing lines respectively stand for initial-state and final-state partons.

All dipole integrals can be done analytically

Hundreds of dipoles for NLO pp \rightarrow 3 jets Higher Order QCD: Lect. 2 11

The NNLO Frontier

NNLO QCD required for high precision at LHC:

- parton distributions
 - evolution (NNLO DGLAP kernels)
 - fits to DIS, Drell-Yan, and jet data
- LHC production of single Ws and Zs
 - "partonic" luminosity monitor
 - precision m_W
- Higgs production via gluon fusion and extraction of Higgs couplings
- NNLO progress historically in terms of number of scales:
 0,1,2, O
- More scales tougher, but more flexible applications

No-scale, inclusive problems

$$R(e^+e^-
ightarrow$$
 hadrons) & $R(au
ightarrow
u_ au +$ hadrons)

Gorishnii, Kataev, Larin; Surguladze, Samuel (1990)

DIS sum rules: $\int_0^1 dx F_n(x)$ Bjorken $(\bar{\nu}p - \nu p)$ Bjorken $(\vec{e}p)$ & Gross-Llewellyn-Smith $(\nu p + \bar{\nu}p)$ Larin, Vermaseren (1991)

Use unitarity of S-matrix to relate real production of hadrons to imaginary part of virtual-photon forward scattering:

$$S = 1 + iT$$

$$1 = S^{\dagger}S = (1 - iT^{\dagger})(1 + iT)$$

$$2 \operatorname{Im} T = T^{\dagger}T$$

$$\sum_{h} \left| \int_{T^{\dagger}T} \int_{T^{T$$

Transforms inclusive phase-space integrals into loop integrals for virtual photon propagator. s (or Q^2) factors out by dim. analysis

No-scale problems (cont.)

Multi-loop integral technology: Integration by parts (IBP)

$$k \xrightarrow{p+k} p+q \xrightarrow{q-k} k \qquad 0 = \int d^D p d^D q \dots \frac{\partial}{\partial q^{\mu}} \frac{k^{\mu}}{p^2 q^2 (p+q)^2 \dots}$$

 Reduces problem to system of linear equations, solved recursively by MINCER, in terms of few "master integrals"
 Gorishnii, Larin, Surguladze, Tkachov (1989)

No-scale \Rightarrow analytic simplicity – pure numbers

$$\begin{aligned} \frac{R_{e^+e^-}}{R^{(0)}} &= 1 + \frac{\alpha_s}{\pi} + \left(\frac{\alpha_s}{\pi}\right)^2 \left[-11\zeta(3) + \frac{365}{24} + n_f \left(\frac{2}{3}\zeta(3) - \frac{11}{12}\right) \right] \\ &+ \left(\frac{\alpha_s}{\pi}\right)^3 \left[\frac{275}{6}\zeta(5) - \frac{1103}{4}\zeta(3) - \frac{121}{8}\zeta(2) + \frac{87029}{288} \right. \\ &+ n_f \left(-\frac{25}{9}\zeta(5) + \frac{262}{9}\zeta(3) + \frac{11}{6}\zeta(2) - \frac{7847}{216} \right) \\ &+ n_f^2 \left(-\frac{19}{27}\zeta(3) - \frac{1}{18}\zeta(2) + \frac{151}{162} \right) \right] \end{aligned}$$

L. Dixon, 7/21/06

1-scale, inclusive problems

 $\begin{array}{ll} \mbox{Drell-Yan, W,Z total cross section} \\ \sigma^{\rm tot}(pp \rightarrow V + X) & \mbox{Hamberg, van Neerven, Matsuura (1990)} \\ \mbox{Higgs total cross section $(m_t \rightarrow \infty)$} \\ \sigma^{\rm tot}(pp \rightarrow H + X) & \mbox{Harlander, Kilgore; Anastasiou, Melnikov (2002);} \\ & \mbox{Ravindran, Smith, van Neerven (2003)} \\ \hat{\sigma} & \mbox{depends on $z = M_{V,H}^2/\hat{s}$} \end{array}$

DIS coefficient functions $C_i(z)$ Van Neerven, Zijlstra (1991) F_L -- Moch, Vermaseren, Vogt (2004)

Leading-twist anomalous dimensions DGLAP kernels $P_{ij}(x)$ Moch, Vermaseren, Vogt (2004)

L. Dixon, 7/21/06

1-scale problems (cont.)

 Can apply unitarity and multi-loop integral technology to DY/Higgs production too: Anastasiou, Melnikov (2002) forward 2 → 2 scattering instead of propagator

cut imposes $\delta(p_i^2 - m_i^2)$, which includes $\delta(m_V^2 - z\hat{s})$

analytic structure of 1-scale integrals: (harmonic) polylogarithms $Li_n(z)$

1-scale applications

• Precise prediction of total cross sections σ_W and σ_Z at Tevatron (and LHC) – use ratio to measure $Br(W \rightarrow Iv)$

• Reduction of uncertainty on $\sigma(gg \rightarrow H+X)$ at LHC

Critical for extracting quantitative Higgs couplings (to gg, $\gamma\gamma$, ...) from a Higgs signal, ~ $\sigma \times Br$

To make NNLO computation tractable – reduce number of loops by 1 – work in large *m*_t limit (OK at NLO): Djouadi, Spira, Zerwas, hep-ph/9504378

$\sigma(pp \rightarrow H + X)$ at NNLO

Still many amplitude interferences, with different numbers of final state gluons (or quarks). Each diverges; only sum is finite.

Kinematics equivalent to W/Z/γ* production
Can apply unitarity + multi-loop integral technology here too (first done here, in fact) Anastasiou, Melnikov (2002)

$\sigma(pp \rightarrow H + X)$ at NNLO

• K factor = $\sigma^{X}(\mu)/\sigma^{LO}(\mu=1)$ for $gg \rightarrow H+X$ at LHC

Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven; Catani, De Florian, Grazzini, Nason; Grazzini, hep-ph/0209302

L. Dixon, 7/21/06

NNLO DGLAP kernels

Moch, Vermaseren, Vogt, hep-ph/0403192, hep-ph/0404111

- NNLO DGLAP kernels and DIS coefficient functions permit
 - NNLO DIS pdf fits Alekhin, hep-ph/0211096; hep-ph/0508248
 - ~NNLO global pdf fits Martin, Roberts, Stirling, Thorne, hep-ph/0410230

2-scale, semi-inclusive problem

Drell-Yan, W, Z rapidity distribution $Y_V = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$ $\frac{d\sigma(pp \rightarrow V + X)}{dY_V}$ Anastasiou, LD, Melnikov, Petriello (2003)

 $\hat{\sigma}$ depends on $\textbf{\textit{z}}=M_{V,H}^2/\hat{s}$ and Y_V

• Unitarity + multi-loop IBP method still works – one more "propagator" to implement rapidity δ function

2-scale applications

L. Dixon, 7/21/06

Higher Order QCD: Lect. 2

• Uncertainty due to omitted higher-order terms very small

• Permits use of $d\sigma_{W,Z}/dY$ as "partonic luminosity monitor": use it to normalize other cross sections – pp luminosity, some detector efficiencies, drop out of ratio

> Dittmar, Pauss, Zurcher, hep-ex/9705004

L. Dixon, 7/21/06

- Improve NNLO pdf fits using Drell-Yan data at NNLO
- Sensitive to large x sea quark distributions
- And, thereby, to large x gluon
- NNLO corrections ~ 10% at large $x_F = x_1 x_2$ due to large logs

• Impact of DY data @ NNLO on global NNLO pdf fits:

Martin, Roberts, Stirling, Thorne, hep-ph/0606244

• Hard to see on log plot, but global NNLO fit has improved χ^2 , vs. global NLO, a little larger $\alpha_s(M_Z) = 0.119$

Although fit gets more tension as DY@NLO \rightarrow DY@NNLO (less sea \rightarrow less gluon at high x) vs. Tevatron high E_T jets (more gluon at high x) Stirling

Jet cross section still NLO!

E866 pp data and MRST fits ($x_F > 0.45$)

L. Dixon, 7/21/06

∞ -scale problem

 "Holy grail": Flexible method for arbitrary (infrared-safe) observable at NNLO. Include isolation, p_T, rapidity cuts, jet algorithm dependence, ...

Partial wish list:

- e^+e^- event-shape observables
- pp or $ep \rightarrow$ inclusive jets, dijets, multijets
- $pp \rightarrow (W, Z, H) + X$ with parton-level cuts
- $pp \rightarrow (W, Z) + jets$
 - Amplitudes known for many of these processes
 - Phase-space integration is the stumbling block
- Analytic structure too complicated; go numerical

Numerical phase-space integration

 Integration has to be done in D=4-2s due to severe infrared divergences (1/s⁴)

Example: e^+e^- event-shapes

Phase-space integration (cont.)

Two basic approaches at present:

Method 1. Iterated sector decomposition

Partition integration region and remap to make divergences "1-dimensional", let computer find subtraction terms

Binoth, Heinrich; Anastasiou, Melnikov, Petriello (2003,2004)

L. Dixon, 7/21/06

Phase-space integration (cont.)

Method 2. Use known factorization properties of amplitudes to build subtraction terms (~1997-2003) for general processes, and integrate them, a la NLC

Kosower; Weinzierl; Gehrmann, Gehrmann-de Ridder, Heinrich (2003) Frixione, Grazzini (2004); Gehrmann, Gehrmann-de Ridder, Glover (2004,2005); Del Duca, Somogyi, Trocsanyi (2005)

construct the 2-unresolved-parton counterterm using the IR currents

$$\begin{split} \mathbf{A}_{2} |\mathcal{M}_{m+2}^{(0)}|^{2} &= \sum_{r} \sum_{s \neq r} \left\{ \sum_{i \neq r,s} \left[\frac{1}{6} \, \mathbf{C}_{irs} + \sum_{j \neq i,r,s} \frac{1}{8} \, \mathbf{C}_{ir;js} + \frac{1}{2} \, \mathbf{S}_{rs} \right. \\ &+ \frac{1}{2} \left(\mathbf{C} \mathbf{S}_{ir;s} - \mathbf{C}_{irs} \mathbf{C} \mathbf{S}_{ir;s} - \sum_{j \neq i,r,s} \mathbf{C}_{ir;js} \mathbf{C} \mathbf{S}_{ir;s} \right) \right] \\ &- \sum_{i \neq r,s} \left[\mathbf{C} \mathbf{S}_{ir;s} \mathbf{S}_{rs} + \mathbf{C}_{irs} \left(\frac{1}{2} \, \mathbf{S}_{rs} - \mathbf{C} \mathbf{S}_{ir;s} \mathbf{S}_{rs} \right) \right. \\ &+ \sum_{j \neq i,r,s} \mathbf{C}_{ir;js} \left(\frac{1}{2} \, \mathbf{S}_{rs} - \mathbf{C} \mathbf{S}_{ir;s} \mathbf{S}_{rs} \right) \right] \right\} |\mathcal{M}_{m+2}^{(0)}|^{2} \end{split}$$

L. Dixon, 7/21/06

LHC applications

• So far, just from method 1

Anastasiou, Melnikov, Petriello, hep-ph/0409088; hep-ph/0501130

L. Dixon, 7/21/06

Higher Order QCD: Lect. 2

LHC applications (cont.)

• $pp \rightarrow W + X \rightarrow \ell \nu + X$ with parton-level cuts

Important to constrain observed lepton rapidity (not *W* rapidity) and to impose realistic cuts on lepton $p_{\rm T}$ and missing $E_{\rm T}$ Melnikov, Petriello, hep-ph/0603182

 $p_{\perp}^{e} > p_{\perp}^{e,\min}, |\eta^{e}| < 2.5, E_{\perp}^{miss} > 20 \text{ GeV}$

$p_{\perp}^{e,\min}$	LO	NLO	NNLO
Inc	11.70,13.74,15.65	16.31, 16.82, 17.30	16.31, 16.40, 16.50
20	5.85, 6.96, 8.01	7.94,8.21,8.46	8.10,8.07,8.10
30	4.305, 5.12, 5.89	6.18, 6.36, 6.54	6.18, 6.17, 6.22
40	0.628, 0.746, 0.859	2.07, 2.10, 2.11	2.62, 2.54, 2.50
50	0,0,0	0.509,0.497,0.480	0.697, 0.651, 0.639

As in more inclusive computations, scale uncertainties highly reduced at NNLO

TABLE I: The lepton invariant mass distribution $d\sigma/dM^2$, $M = m_W$, for on-shell W production in the reaction $pp \rightarrow W^- X \rightarrow e^- \bar{\nu} W$, in pb/GeV², for various choices of $p_{\perp}^{e,\min}$, GeV and $\mu = m_W/2, m_W, 2m_W$.

Conclusions

- Higher order QCD for the LHC is an extremely rich field – we only scratched the surface of it here
- At hadron colliders, the physics is QCD
- up to small, electroweak corrections!
- To uncover new physics of electroweak strength, we will need to understand QCD at colliders quite well!
- Fortunately, there are lots of energetic young researchers
- But still, lots of work to be done before, and as, the data roll in from the energy frontier!

Extra Slides

Why are (N)NLO corrections large?

+ 80 - 100%

for some

gluon-initiated ($gg \rightarrow Higgs + X$)

+ 30% typical for quark-initiated (*W/Z*, ...)

Some answers (not all for all processes)

- 1. LO parton distribution fits not very reliable due to large theory uncertainties
- New processes can open up at NLO. In W/Z production at Tevatron or LHC, *qg -> γ*q* opens up, and *g(x)* is very large but correction is negative!
- Large π² from analytic continuation from space-like region where pdfs are measured (DIS) to time-like region (Drell-Yan/W/Z):

L. Dixon, 7/21/06

4. Soft-gluon/Sudakov resummation

- A prevalent theme in QCD whenever one is at an edge of phase space.
- Infrared-safe but sensitive to a second, smaller scale
- Same physics as in (high-energy) QED: $e^+e^- = e^+e^-(\gamma)$
- What is prob. of no γ with $E > \Delta E$, $\theta > \Delta \theta$?

$$P = 1 - \frac{\alpha}{\pi} \int_{\Delta E} \frac{dE}{E} \int_{\Delta \theta} \frac{d\theta}{\theta} + \cdots = 1 - \frac{\alpha}{\pi} \ln \Delta E \ln \Delta \theta + \cdots$$
$$= \exp\left(-\frac{\alpha}{\pi} \ln \Delta E \ln \Delta \theta\right) + \cdots$$
soft collinear

leading double logarithms -- in contrast to single logs of renormalization group, DGLAP equations. exponentiation because soft emissions are independent

Hadron collider examples

 $p_T(Z)$, important application to $p_T(W)$, m_W measurement at Tevatron

Production of heavy states, like

- top quark at the Tevatron (W and Z production less so),
- even a light Higgs boson at the LHC, via gg -> H

Called threshold resummation or $x \rightarrow 1$ limit,

where $x = M^2/s$.

Can be important for x << 1 though.

For $m_{\rm H} = 120 \text{ GeV}$ at 14 TeV LHC, $x = 10^{-4}$!

Radiation is being suppressed because you are

```
running out of phase space – parton distributions are falling fast.
```

Threshold Resummation

Can see the first threshold log in the NLO corrections to Drell-Yan/*W*/*Z* production:

$$C_F D_q(z,\mu_F) = 4C_F (1+z^2) \left(\frac{\ln(1-z) + \ln(M/\mu_F)}{1-z} \right)_+ -2\frac{1+z^2}{1-z} \ln z + \delta(1-z) \left(\frac{2}{3}\pi^2 - 8\right)$$

It is a double-log expansion:

$$D_q^{(n)}(z,\mu_F) \propto (C_F \alpha_s)^n \left[\left(\frac{\ln^{2n+1}(1-z)}{1-z} \right)_+ + \cdots \right]$$

For $gg \rightarrow H$, same leading behavior at large *z*. Except color factor is much bigger: $C_A = 3$, not $C_F = 4/3$

$$D_{gg \to H}^{(n)}(z,\mu_F) \propto (C_A \alpha_s)^n \left[\left(\frac{\ln^{2n+1}(1-z)}{1-z} \right)_+ + \cdots \right]$$

L. Dixon, 7/21/06

Fast falling pdfs -- worse for gluons

