Stanctare Model and CKM

 physios at the B- Factories. Legacy for LHC

SLAC Summer Instifute

- The Kaon Taught Us Most of 20th Century Particle Physics

- Strangeness
- Oscillations
- Parity Violation
- CP Violation
- Quarks
- No flavor-changing neutral currents

No Flavor-Changing Neutral Currents

FCNC Effects

$$
\propto \Delta m_{q}^{2} / M_{W}^{2}
$$

New physics must not upset delicate balance suppressing FCNC.

FCNC come from loops (boxes).

Will B Mesons be the K Mesons of the 21st Century?

The New Physics is hidden in the boxes of mixing and penguins, together with the old physics due to unequal quark masses.

Two Approaches

B physics:
Some pieces might be heard without being seen.
shake the Box, listen
The sound you hear is flavor-changing neutral currents!

Listening for Flavor-Changing Neutral Currents

If all quarks had the same mass we could pack them perfectly and not a sound would be heard.

Because the t is heavy, they rattle around.

How B Physics Could Play Decisive Role in LHC Era

- Challenge at LHC likely to be relationships among the new particles and between old and new particles:
- Do the new particles fit snugly together because they are degenerate in mass?
- Are the new particles aligned in just the same way the quarks are aligned, so we hear the same sounds?
- High precision data, either agreeing with or contradicting Standard Model, likely be essential in revealing the structure of new physics.

Real Power of B Factories Comes in the Long Term

- To demonstrate on their own a failure of the Standard Model Belle/BaBar need a 5-б effect.
- An isolated effect would be hard to interpret, with myriad models to choose from.
- LHC results should lead to restricted set of models.
- Results from B factories, patterns of 3- σ deviations or even precisely confirmed agreement with the Standard Model, would powerfullly constrain the interpretation of LHC results.

Outperforming Expectations

$1 \mathrm{ab}^{-1}$ achieved. On the way to $2.5 \mathrm{ab}^{-1}$.

Overall Strategy

- New physics involves heavy particles that cannot be produced and thus appear only in loops. (K. Kinoshita's talk)
- Mixing is intrinsically a loop process.
- "Penguin" process also are loops.
- Comparison between "tree" (non-loop) and loop processes is key.
- Focus here is "tree" decays and mixing.

Unitarity Triangle

Weak decay: $\quad d \rightarrow V_{u d} u+V_{c d} c+V_{t d} t$
$V_{c K M}=\left[\begin{array}{lll}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right]=\left(\begin{array}{ccc}1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right)<\begin{aligned} & \text { Wolfenstein } \\ & \text { convention: } \\ & \text { Expand in } \\ & \lambda \approx 0.22 .\end{aligned}$
A unitary transformation so
$V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$
CKM matrix elements convention-dependent, but angles aren't.

Basic Strategy

CP Violation in $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{S}}$

Relative phase:

All observables are independent of phase convention.

July 25, 2006
R. Cahn -- SSI-2006

Measurement of $\sin 2 \beta$

Generally, because of oscillations of neutral B mesons, their decay rates are not exponential, but rather

$\Gamma\left(\bar{B}^{0} \rightarrow f\right) \propto(1+S \sin \Delta m t-C \cos \Delta m t) e^{-\Gamma|t|}$
$\Gamma\left(B^{0} \rightarrow f\right) \propto(1-S \sin \Delta m t+C \cos \Delta m t) e^{-\Gamma|t|}$

If one decay mechanism,e.g. $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}: \quad \mathrm{S}=\sin 2 \beta, \mathrm{C}=0$

Sin 2β from $\mathrm{J} / \psi \mathrm{K}_{\mathrm{s}, \mathrm{L}}$: Progress and Surprise

Resolving the 2β vs $\pi-2 \beta$ Ambiguity

$$
\mathrm{B} \rightarrow \mathrm{~J} / \psi \mathrm{K}^{*}
$$

Angular, time-dependent analysis $\cos 2 \beta>0$ at 86% CL

$\cos 2 \beta=1.87_{-0.53-0.32}^{+0.40^{+0.22}}$
98.3\% exclusion of "wrong" value. hep-ex/0605023

β Constraint

July 25, 2006
R. Cahn -- SSI-2006

Measuring α

$\mathrm{B} \rightarrow \pi \pi$

$B \rightarrow \rho \rho$

$$
\propto\left(V_{t d}^{*} V_{t b}\right)^{2} V_{u b}^{*} V_{u d} \propto \frac{\left(V_{t d}^{*} V_{t b}\right) V_{u b}^{*} V_{u d}}{V_{t d} V_{t b}^{*}}
$$

Relative phase:

$$
\frac{V_{u t} V_{d d}^{*}}{V_{u b b}^{*} V_{u d} V_{d t} V_{t b}^{*}} V_{t d}^{*} V_{t b}=e^{-2 i \alpha}
$$

Penguins and $\sin 2 \alpha$

Two weak mechanisms to final state, more complicated. Isospin triangle provides correction.

If the branching fractions to $\pi^{0} \pi^{0}$ were small as expected, the triangles would be flat and κ would be small. Instead $\left|\alpha-\alpha_{\text {eff }}\right|<35^{\circ} @ 90 \%$ C.L.

$\rho \rho$ Rescues α, For Now.

- $\rho \rho$ longitudinally polarized. No spin problem.
- $\rho^{0} \rho^{0}$ much smaller than other channels. Triangle flat, so small κ correction.

$$
\frac{d^{2} N}{d \cos \theta_{1} d \cos \theta_{2}} \propto f_{L} \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\frac{1}{4}\left(1-f_{L}\right) \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}
$$

$$
f_{L}=0.978 \pm 0.014_{-0.019}^{+0.021}
$$

Current Status of α from $\rho \rho$

$$
\begin{aligned}
& S_{\rho^{+} \rho^{-}}=-0.33 \pm 0.24_{-0.14}^{+0.08} \\
& C_{\rho^{+} \rho^{-}}=-0.03 \pm 0.18 \pm 0.09
\end{aligned}
$$

July 25, 2006
R. Cahn -- SSI-2006

Status of α Combination of $\pi \pi, \rho \rho, \rho \pi$.

Precision depends on smallness of $\rho^{0} \rho^{0}$ mode.

$$
\alpha=\left(99_{-9}^{+12}\right)^{0}
$$

HFAG

July 25, 2006
R. Cahn -- SSI-2006

Measuring γ

Dalitz Plot Analysis for $\mathrm{K}_{\mathrm{s}} \pi \pi$

$D^{0} \rightarrow \bar{K}^{0} \pi^{-} \pi^{+}$has K^{*-} resonance
$\bar{D}^{0} \rightarrow K^{0} \pi^{-} \pi^{+} \quad$ has $\mathrm{K}^{\star+}$ resonance

The relative strong phase between these channels is "known" from the ordinary Dalitz plot with $\mathrm{D}^{\star+} \rightarrow \mathrm{D}^{0} \pi^{+}$.

The relative strength $r_{B} \approx|A(b \rightarrow u) / A(b \rightarrow c)|$ isn't.
Nor are the relative weak phase, γ, and strong phase, δ.
A. Bondar (2002); Giri et al. (2003).

July 25, 2006
R. Cahn -- SSI-2006

Interference in Dalitz Plot

Current Status of γ from Dalitz Plot Analysis

BaBar (205/fb):

Error on γ depends on value of r_{B}

$$
\gamma=53_{-18}^{+15}(\text { stat }) \pm 3(\text { syst }) \pm 9(\text { model })
$$

γ Constraint

July 25, 2006
R. Cahn -- SSI-2006

Exclusive
Three form factors:
Two ratios.
One coefficient for q^{2} dependence.

Extrapolate to find $\mathrm{F}\left(\mathrm{q}^{2}{ }_{\text {max }}\right) \mathrm{V}_{\mathrm{cb}}$.
Need theory for $\mathrm{F}\left(\mathrm{q}^{2}{ }_{\max }\right)$.

d
Inclusive
Analog of deep inelastic scattering.
Theory relates moments of lepton energy, etc. to total rate and thus to Vcb. Expand in α_{s} and $1 / m_{b}$.

Determine simultaneously a few non-perturbative parameters, which reflect properties of B mesons.
R. Cahn -- SSI-2006

Exclusive Measurement of V_{cb}

Measure q^{2} and angles.

$$
\begin{aligned}
& B \rightarrow D^{*} \ell v \\
& B \rightarrow D \ell v
\end{aligned}
$$

Determine form factors.
Extrapolate to q^{2} max.
Get $\mathrm{F}_{\left(\mathrm{q}_{\text {max }}^{2}\right)} \mathrm{V}_{\mathrm{cb}}$.
BaBar: $0.0355 \pm 0.0003 \pm 0.0016$ Belle: $0.036 \pm 0.0019 \pm 0.0018$

$$
\begin{aligned}
& F\left(q^{2}{ }_{\text {max }}\right)=0.91 \pm 0.04 \text { (theory) } \\
& \quad V c b=0.039 \pm 0.002 \quad \text { (unofficial average) }
\end{aligned}
$$

V_{cb} from Inclusive Analysis

Buchmuller \& Flacher, PRD 73,073008(2006)

$$
\left|V_{c b}\right|=\left(41.96 \pm 0.23_{\exp } \pm 0.35_{O P E} \pm 0.59_{\Gamma s l}\right) \times 10^{-3}
$$

Vcb known to $\pm 1.5 \%$.

Bauer et al, PRD 70, 094017 (2004)

$$
\left|V_{c b}\right|=\left(41.4 \pm 0.6 \pm 0.1_{\tau_{B}}\right) \times 10^{-3}
$$

V_{ub} Much Harder: Reconstruct Other B

Momentum of semileptonically decaying B known!

Low M_{x} excludes $b \rightarrow c$.

July 25, 2006
R. Cahn -- SSI-2006

$\mathrm{V}_{\text {ub }}$ Inclusive Summary

$A_{S L}$

$$
A_{S L}=\frac{\Gamma\left(\mathrm{Y}(4 S) \rightarrow \ell^{+} \ell^{+} X\right)-\Gamma\left(\mathrm{Y}(4 S) \rightarrow \ell^{-} \ell^{-} X\right)}{\Gamma\left(\mathrm{Y}(4 S) \rightarrow \ell^{+} \ell^{+} X\right)+\Gamma\left(\mathrm{Y}(4 S) \rightarrow \ell^{-} \ell^{-} X\right)}
$$

CP violation in mixing alone: $\quad\left|\left\langle B^{0} \mid \bar{B}^{0}\right\rangle\right| \neq\left|\left\langle\bar{B}^{0} \mid B^{0}\right\rangle\right|$

$$
A_{S L} \propto \operatorname{Im} \frac{\Gamma_{12}}{M_{12}} \propto \operatorname{Im} \frac{\left(V_{c b} V_{c d}^{*}+V_{u b} V_{u d}^{*}\right)^{2} \leftarrow 0 \text { physical }}{\left(V_{t b} V_{t d}^{*}\right)^{2}<0} \text { virtual: new physics? }
$$

Suppressed by $\left(m_{c}{ }^{2} / m_{b}{ }^{2}\right)$ in Standard Model.

Theory: -(5.5 $\pm 1.3) \times 10^{-4}$

Listen Carefully

- If we "listen" carefully, we may still find New Physics.
- But not hearing it, could be just as important:

Gregory (Scotland Yard detective): "Is there any other point to which you would wish to draw my attention?"

Holmes: "To the curious incident of the dog in the night-time."
Gregory: "The dog did nothing in the night-time."
Holmes: "That was the curious incident."
"Silver Blaze," Arthur Conan Doyle
July 25, 2006
R. Cahn -- SSI-2006

