

Electromagnetic Calorimetry at LHC

Ren-Yuan Zhu

California Institute of Technology

July 21, 2006

SLAC Summer Institute 2006

- Requirements
- Designs
- Constructions
- Test Beam Results
- Commissions

Status of the SM Higgs

- Electroweak fit (incl. quantum corrections) to m_H is sensitive to m_{TOP}(=172.7 ± 2.9 GeV)
- Best-fit value:
 m_H = 89⁺⁴²₋₃₀ GeV
- Direct search limit:
 m_H > 114.4 GeV

✤ 95% CL upper limit:
 m_H < 207 GeV

Evidence of $M_H \sim 115$ GeV at LEP

LE CONTRACTOR

$H \rightarrow \gamma \gamma$ Search Needs Precision ECAL

- Fast response: 25 ns between LHC bunch crossing
- Large coverage: up to |η| = 3
 ➢ Barrel: |η| < 1.5, Endcaps: 1.5 < |η| < 3
- Energy Resolution: $\sigma E / E = a / \sqrt{E \oplus b \oplus c/E}$
 - as small as possible stochastic term (a), constant term (b) and noise term (c)
- Photon Angular Resolution: δθ < 50 mrad / √ E
 >LHC bunch length 7.5 cm →H vertex spread 5.3 cm
- Good particle ID: γ/jet, particularly π⁰/γ discrimination
 Strips and shower shape analysis
- Large dynamic range: 5 orders of magnitude
- Radiation resistance: 10^{13} n/cm² and 100 krad @ η =0, $2x10^{14}$ n/cm² and 5 Mrad @ η =2.6 in 10 years

Parameters of ATLAS and CMS ECAL

	ATLAS Lead/L. Ar ECAL		CMS PWO Crystal ECAL					
	Barrel	Endcaps	Barrel	Endcaps				
# of Channels	110,208	83,744	61,200	14,648				
Lateral Segmentation ($\Delta \eta x \Delta \phi$)								
Presampler	0.025 x 0.1							
Strip/Preshower	0.003 x 0.1	0.005 x 0.1		32 S /4 crystals				
Main Body	0.025 x 0.025		0.0175 x 0.0175	Up to 0.05 x 0.05				
Back	0.05 x 0.025							
Longitudinal Segmentation								
Presampler	10 mm L. Ar	2 x 2 mm L. Ar						
Strip/Preshower	~4.3 X ₀	~4 X ₀		3 X ₀				
Main Body	~16 X ₀	~20 X ₀	26 X ₀	25 X ₀				
Back	~2 X ₀	~2 X ₀						
Designed Energy Resolution								
Stochastic: a	10%	10 - 12%	2.7%	5.7%				
Constant: b	0.7%	0.7%	0.55%	0.55%				
Noise: C	0.25 GeV	0.25 GeV	0.16 GeV	0.77 GeV				

ATLAS Detector

ATLAS L. Ar Accordion ECAL

Three Cryostats EM Barrel : $|\eta| < 1.475$ EM Endcaps : $1.4 < |\eta| < 3.2$ ~190K readout channels

SLAC Summer Institute 2006, by Ren-vuan Zhu, Caltech

- Fast readout achieved with dedicated electronics and inherent cabling
- L. Ar as active material inherently linear
- Hermetic coverage
- Readout allows flexible longitudinal and lateral segmentations
- L. Ar is inherently radiation hard
- Challenges:

Calibration to achieve linearity
 Readout noise with fast shaping

ATLAS L. Ar ECAL Barrel Module

32 modules produced and tested at cold between 2001-2003 Assembly/insertion in cryostat end 2003

ATLAS L. Ar ECAL Barrel

- Beam tests using a real detector module with the production version of the readout electronics have been carried out.
- Preliminary data indicate the electronics system is working up to its design spec:

- 2002: study with production modules
- 2004: material study with 0 to 75 mm of AI in front of the calorimeter
- \Rightarrow If amount of material is corrected, resolution is identical

0.1% linearity achieved

- 2002: setup, so beam energy under was under control @0.03%
- 2004: 0.5% due to beam energy error (1%)
- 2004: Extended the study with different amounts of material

ATLAS L. Ar ECAL Uniformity

ATLAS L. Ar Response to Muons

- Noise goes like $\approx \Delta \eta \times \Delta \phi$,
- Signal goes like sampling depth \Rightarrow Most favourable S/N : Middle layer

ATLAS barrel calorimeter being moved to the IP, Nov. 2005

ATLAS endcap calorimeters installation, winter-spring 2006

All L. Ar ECAL cryostats in cavern. Barrel is cold. Readout will grow with more power supplies. Data taking with cosmic starts 7/06 (barrel) and 12/06 (endcaps).

CMS Detector

CMS PWO Crystal ECAL

Barrel: 36 Supermodules (18 per half-barrel) 61200 Crystals (34 types) – total mass 67.4 t Dimensions: ~ $25 \times 25 \times 230$ mm³ (25.8 X⁰) $\Delta \eta \times \Delta \phi = 0.0175 \times 0.0175$ **Endcaps:** 4 Dees (2 per endcap) 14648 Crystals (1 type) – total mass 22.9 t Dimensions: ~ $30 \times 30 \times 220 \text{ mm}^3$ (24.7 X⁰) $\Delta \eta \times \Delta \phi = 0.0175 \times 0.0175 \leftrightarrow 0.05 \times 0.05$

- Excellent resolutions for energy, position and photon angle (with vertex) measurements
- High density allows a compact detector
- Simple building blocks allow easy mechanical assembly, hermetic coverage and fine transverse granularity
- Single segment allows straightforward energy and position reconstruction
- Challenges:

Radiation damage of scintillating crystals
 Temperature stabilization to 0.1°C

Mass Produced Crystals

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PWO(Y)	LSO(Ce)	GSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	0.89	1.14	1.38
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.00	2.07	2.23
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.7	20.9	22.2
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.20	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	425 420	402	440
Decay Time ^b (ns)	230	1250	30 6	630 0.9	300	30 10	40	60
Light Yield ^{b,c} (%)	100	165	3.6 1.1	36 3.4	21	0.29 .083	83	30
d(LY)/dT ^ь (%/ °C)	-0.2	0.3	-1.3	-1.3	-0.9	-2.7	-0.2	-0.1
Experiment	Crystal Ball	CLEO BaBar BELLE BES III	KTeV	TAPS (L*) (GEM)	L3 BELLE PANDA?	CMS ALICE PrimEx PANDA?	-	-

a. at peak of emission; b. up/low row: slow/fast component; c. PMT QE taken out.

PWO: Short Radiation Length

PWO: Fast Scintillation

Recorded with Agilent 6052A digital scope

Fast Scintillators

Slow Scintillators

Measured with a Philips XP2254B PMT (multi-alkali cathode)

Fast Scintillators

Slow Scintillators

PWO light output has large temperature coefficient, requiring a temperature stabilized environment

Crystal delivery determines ECAL Critical Path

Two Suppliers:

BTCP (Bogoroditsk, Russia) ~ 1,160/month

- SIC (Shanghai, China) ~ 140/month
- ~ 85% of Barrel crystals already delivered (52k of 61k) Preseries of Endcap crystals: 100 BTCP, 300 SIC
- Last Barrel crystal delivery Feb 2007, ready for 2007 pilot run
- Last Endcap crystal delivery Jan 2008, ready for 2008 physics run

Photodetectors

Barrel - Avalanche photodiodes (APD)

Two Hamamatsu S8664-55 APDs/crystal

- Gain: 50 QE for PWO: ~75%
- Temperature dependence: -2.4%/^OC
- Delivery complete

- Gain 8 -10 (B=4T) Q.E. for PWO: ~20%
- Delivery ~92%

On-detector Electronics

Cooling and Temperature Stabilization

Chilled water at 50l/s

41 (N)

(Worst case: Bottom Supermodule)

Cooling bars in direct contact with electronic cards

Construction: Barrel

2 Regional Centres: CERN and Rome

Module: 400/500 crystals

Bare SM

SM with cooling

Sub-module: 10 crystals

Super-module: 1700 crystals

Assembly status: 27/36 bare SMs assembled 21/36 SMs completed Production rate 4/month

Construction: Endcaps

Supercrystal: 25 crystals

Dee (1/2 endcap): 3662 crystals

Production status

All mechanical parts delivered

Endcap crystal production starts in summer 2006

Backplates successfully test mounted on HCAL

Cosmic Muon Test & Calibration

Each SM operated with cosmic rays for ~1 week \rightarrow Intercalibration: 1-3% (stat) depending on η

Two energy resolution curves are compared:

- Including cuts on electron position to select only electrons hitting crystal centre => central impact resolution
- Without any cuts, but including cluster corrections => uniform impact resolution

Uniform Impact

Energy resolution: $\sigma E/E = 2.9/\sqrt{E \oplus 0.3 \oplus 0.125/E}$

- Induced absorption caused by color center formation:
 - reduces light attenuation length and thus light output, and maybe
 - degrades light response uniformity (LRU)
- Induced phosphorescence:
 - increases readout noise
- Reduced scintillation light yield:
 - reduces light output and degrades light response uniformity

ltem	CsI(TI)	Csl	BaF_2	BGO	PbWO ₄
Color Centers	Yes	Yes	Yes	Yes	Yes
Fluorescence	Yes	Yes	Yes	Yes	Yes
Scintillation	No	No	No	No	No
Recover @RT	Slow	Slow	No	Yes	Yes
Dose Rate Dependence	No	No	No	Yes	Yes
Thermall Annealing	No/Yes	No/Yes	Yes	Yes	Yes
Optical Bleaching	No/Yes	No/Yes	Yes	Yes	Yes

PWO: No Damage in Scintillation

No variation in emission and light response uniformity

Radiation induces absorption caused by color center formation

Light output variations can be corrected by transmittance variations

• D_i^0 : initial color center density; • D_i^{all} is the total density of trap related to the color center in the crystal; • a_i : recovery costant in units of hr⁻¹; • b_i: damage contant in units of kRad⁻¹;

• R: the radiation dose rate in units of kRad/hr.

• D_i : color center density in units of m⁻¹;

 $D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$

PWO: Damage is Dose Rate Dependent

Laser Light Monitoring System

Laser Stability with Software Feedback

A factor of two better stability has been observed in a run of 10 days, using laser pulse timing as the feedback input, when YLF current increased by 0.5 A

DSO2943, TiS-2, 440nm

DSO2943, TiS-2, 440nm

Laser Monitoring Performance

ERFLORING VIE STREET

In situ Calibration Strategy

π⁰ Calibration under Development

- Level 1 trigger rate dominated by QCD giving dozens of π^{0} 's/event
- Useful $\pi^0 \rightarrow \gamma \gamma$ decays selected online giving $\sim 10^3$ Hz rate
- ~ 500 π⁰/crystal/day expected skimmed event format: ~1
 MB/sec
- Daily calibration runs would give a precision of ~ 1%

After commissioning and cosmic data taking of first ~10 super-modules (17,000 channels): ~ 15 channels are not working, ~ 15 channels are noisy

Supermodule Installation at SX5

- > 18 SMs (EB+) will be inserted into HB+ at SX5 (surface).
- ➤ Maximum SMs (EB-) will be inserted into HB- at SX5 by mid-Jan..
- Remaining SMs will be commissioned at UXC (underground).

- Endcap Assembly plan assumes last EE crystal delivered end Jan 08
 Aim is to have Endcaps installed for 2008 Physics Run
- All cables and services are already installed
- Goal: D1 Sept07, D2 Nov07, D3 Jan08, D4 Apr08

- LHC physics requires precision ECAL
- LHC environment presents unprecedented technical challenge
- Design of ATLAS and CMS ECAL represent state of art development in calorimetric technology
- Construction of LHC ECAL runs smoothly
- Test beam results of LHC ECAL satisfy their design goals
- Commission of LHC ECAL is well under way
- Looking forward to wonderful physics at LHC