Pixel Vertex Detectors

N. Wermes Bonn University

1. Introduction

From gas-filled chambers to pixel vertex detectors

2. Hybrid Pixel Detectors for the LHC The Signal and the Noise in Pixel Detector

- 3. Making a Pixel Detector From sensor to module-ladder
- 4. Pixel R&D for Future Colliders (addendum) New developments for the ILC

Outline

1. Introduction

From gas-filled chambers to pixel vertex detectors

2. Hybrid Pixel Detectors for the LHC The Signal and the Noise in Pixel Detector

3. Making a Pixel Detector From sensor to module-ladder

4. Pixel R&D for Future Colliders (addendum) New developments for the ILC

important advances in tracking through ...

- multi-wire proportional chambers (1968) and drift chambers (>1972)
 - \rightarrow electronic recording of tracks
 - $\rightarrow \sigma$ = mm 100µm, 0.05 channels / cm²
- vertex drift chambers (~1981)
 - \rightarrow vertexing, life times of long lived particles
 - \rightarrow σ ~ 50µm, 0.1 channels / cm²
- silicon micro strip detectors (1983)
 - \rightarrow precision vertexing
 - $\rightarrow \sigma$ < 10µm, 100 channels / cm²

Jaros, Foster, ...

Hyams, Weilhammer, Klanner, Lutz

important advances in tracking through ...

- multi-wire proportional chambers (1968) and drift chambers (~1975)
 - \rightarrow electronic recording of tracks
 - $\rightarrow \sigma$ = mm 100µm, 0.05 channels / cm²
- vertex drift chambers (~1981)
 - \rightarrow vertexing, life times of long lived particles
 - \rightarrow σ ~ 50µm, 0.1 channels / cm²
- silicon micro strip detectors (1983)
 - \rightarrow precision vertexing
 - $\rightarrow \sigma$ < 10µm, 100 channels / cm²
- pixel detectors (since ~1993)
 - \rightarrow tracking and vertexing in LHC environment
 - \rightarrow σ ~ 10µm, 5000 channels / cm²

Tracking in pp collisions at 14 TeV (LHC)

LHC $\approx 10^6$ x LEP in track rate !

Detection tasks of pixel detectors

- Pattern Recognition and Tracking 1.
 - precision tracking points in $3D \rightarrow$ track seeding
 - 1 pixel layer $\leftarrow \rightarrow$ 3-4 strip layers (x,y & u,v for ambiguities) •
- Vertexing (primary and secondary vertex)¹⁾ 2.
 - impact parameter resolution ~10 μ m (r ϕ), ~70 μ m (z)
 - secondary vertex resolution ~50 μ m (r ϕ), ~70 μ m (z)
 - primary vertex resolution $\sim 11 \mu m (r_{\phi}), \sim 45 \mu m (z)$
 - (life) time resolution

- ~70 fs
- (vertex counting \rightarrow luminosity measurement)
- Momentum measurement ¹⁾ 3.

 $\frac{\sigma_{\rm p_T}}{\sigma_{\rm p_T}} = 0.03\% \ {\rm p_T}({\rm GeV}) \oplus 1.2\%$ рт

(inner detector)

¹⁾values for ATLAS

Vertexing at LEP

Impact parameter resolution (simplified)

SSI, 07/20/2006

Impact parameter resolution (simplified)

... compare ... vertexing at LHC

 $pp \rightarrow ttH (m=120 \text{ GeV})$ $H \rightarrow bb$ $tt \rightarrow W(IvI)b W(qq)b$

~ 1200 tracks/BX

high track density in particular in jets

3D hit information mandatory

Expected resolutions (ATLAS)

Expected resolutions (ATLAS)

Tracking Detectors: ATLAS

Tracking Detectors: ATLAS

	points	σ (R φ) (μm)	σ (Rz) (μm)	
pixel	3	12	60	
SCT	4	17	580	
TRT	36	170	-	

Silicon Pixel Detector	~ 1.8 m ²
Silicon Strip Detector	~ 60 m ²
Transition Radiation Tracker	~ 300 m² _{eq}

Tracking Detectors: CMS

Inner Tracking Detectors: ALICE

2 strips 2 drifts 2 pixels + TPC

Silicon Pixel Detector	~ 0.2 m ²
Silicon Drift Detector	~ 1.3 m ²
Silicon Strip Detector	~ 4.9 m ²

 R_{out} =43.6 cm

Pixel Detector (2 layers, no disks)

> 50x450 µm² cells 10 x 10⁶ pixels

SSI, 07/20/2006

1. Introduction

From gas-filled chambers to pixel vertex detectors

2. Hybrid Pixel Detectors for the LHC The Signal and the Noise in Pixel Detector

- 3. Making a Pixel Detector From sensor to module-ladder
- 4. Pixel R&D for Future Colliders New developments for the ILC

Hybrid Pixel Detectors for the LHC

The pn junction as a semiconductor particle detector

thin (~µm), highly doped p⁺ (~10¹⁹ cm⁻³) layer on lightly doped n⁻ (~10¹² cm⁻³) substrate

The pn junction as a semiconductor particle detector

20

SS

The Signal and the Noise in pixel detectors

e.g. 10 keV X-ray: 3000 e/h ≈ 0.5 fC created charge carriers (e/h) move in depletion region by

drift $v_{drift}(x) = \mu E(x)$

diffusion

 $\sigma_{diff}(t) = \sqrt{2Dt}$

typically 8-10 µm in 300 µm Si

note: photo effect $\sim Z^{4-5}$ Si \rightarrow CdTe, CZT, Hgl₂, ...

The Signal and the Noise in pixel detectors

in Si bulk fully depleted

- $w_i = 3.61 \text{ eV per e/h}$
- a high energy particle
 - \rightarrow ~ 80 e/h per µm
- all charge collected
- ~ 20 000 e/h per 250 µm = 3 fC
- radiation

e.g. 10 keV X-ray: 3000 e/h ≈ 0.5 fC

- pixel pattern
- typical cells: 100 x 150 μm^2 50 x 400 μm^2
- charge diffusion σ ~ 8-10 μm
- \rightarrow charge spread over 2-4 pixels

note: photo effect $\sim Z^{4-5}$ Si \rightarrow CdTe, CZT, Hgl₂, ...

Delta electrons

Delta electrons

effect of δ -electrons

100 keV δ -electron occurs in 300 μ m Si with 6% probability and has "range" of 60 μ m

		13961	,28
		10070	12313.92
			11800,84
	_		11287,76
	-		10774,68
			10261,6
			9748,52
			9235,44
			8722,36
			8209,28
			7696,2
			7183,12
			6670,04
			6156,96
			5643,88
			5130,8 4017-70
			4617,72
total r			4104,64 3591 56
Even	total number of Clusters: 7308		3078.48
Even	total number of clusters. 7300		2565.4
Numt Event # 51004			2052.32
Church Number of Hits in Cluster: 261			1539,24
ciuste	Number of this in cluster. Joh		1026,16
	Cluster Pulse Height: 78155		513,08

δ -electron with perpendicular emission

DEPFET pixels (25 µm x 25 µm)

Signal generation in an electrode configuration

Signal generation in a 2-electrode configuration

Signal generation in a pixel detector (1-dim)

Charge collection in a magnetic field

Lorentz angle measurement (ATLAS)

Measurement method: number of pixel hits is minimum when incidence angle is equal to the Lorentz angle

As bias voltage is increased to cope with irradiation, the Lorentz angle decreases:

Lorentz angle @2T, $150V = -10^{\circ}$ Lorentz angle @2T, $600V = -5^{\circ}$ Pixel modules tilt in ATLAS = $+20^{\circ}$

Effective incidence angle = tilt angle + Lorentz angle

SSI, 07/20/2006

three physical noise sources:

- number fluctuations of quanta \rightarrow velocity fluctuations of quanta \rightarrow
 - 1. shot noise and 2. 1/f noise
 3. thermal noise

where do they appear in a typical pixel detector readout chain ?

three physical noise sources:

number fluctuations of quanta \rightarrow 1. shot noise and 2. 1/f noisevelocity fluctuations of quanta \rightarrow 3. thermal noise

where do they appear in a typical pixel detector readout chain?

three physical noise sources:

number fluctuations of quanta \rightarrow 1. shot noise and 2. 1/f noisevelocity fluctuations of quanta \rightarrow 3. thermal noise

where do they appear in a typical pixel detector readout chain ?

equivalent noise charge $ENC = \frac{\text{noise output voltage (rms)}}{\text{signal output voltage for the input charge of } 1e^{-}$

$$ENC_{tot}^2 = ENC_{shot}^2 + ENC_{therm}^2 + ENC_{1/f}^2$$

charge sensitive preamplifier only

$$ENC_{\text{shot}} = \sqrt{\frac{I_{\text{leak}}}{2q}}\tau_f \qquad = 56e^- \times \sqrt{\frac{I_{\text{leak}}}{nA}\frac{\tau_f}{\mu s}}$$
$$ENC_{\text{therm}} = \frac{C_f}{q}\sqrt{\langle v_{\text{therm}}^2 \rangle} = \sqrt{\frac{kT}{q}\frac{2C_D}{3q}\frac{C_f}{C_{load}}} = 104e^- \times \sqrt{\frac{C_D}{100\,\text{fF}}\frac{C_f}{C_{load}}}$$
$$ENC_{1/f} \approx \frac{C_D}{q}\sqrt{\frac{K_f}{C_{ox}WL}}\sqrt{\ln\left(\tau_f\frac{g_m}{C_{load}}\frac{C_f}{C_D}\right)} = 9e^- \times \frac{C_D}{100\,\text{fF}} \text{(for NMOS trans.)}$$

W, L = width and length of trans. gate $K_f = 1/f$ noise coefficient $C_{ox} =$ gate oxide capacitance C_f = feedback capacitance C_{load} = load capacitance C_D = detector capacitance τ_f = feedback time constant

reference Rossi, Fischer, Rohe, Wermes Pixel Detectors Springer 2006

SSI, 07/20/2006

... with an additional filter amplifier (shaper) being the band width limiter

typical figures for an LHC pixel detector

Noise = 150 e⁻ initially

200 e⁻ after 10 years @ LHC

Signal = $20000 e^{-}$ total charge in 250 µm Si 13000 e^{-} including charge sharing 6000 - 8000 e^{-} after 10 yrs @ LHC

S/N > 30
1. Introduction

From gas-filled chambers to pixel vertex detectors

2. Hybrid Pixel Detectors for the LHC The Signal and the Noise in Pixel Detector

3. Making a Pixel Detector From sensor to module-ladder

4. Pixel R&D for Future Colliders New developments for the ILC target: 10 years LHC $\cong 10^{15} \, n_{eq}/cm^2$ (600 kGy)

- Si sensors: depletion voltage and leakage currents rise
- FE chips: threshold shifts & parasitic transistors occur
- glue: becomes hard and brittle
- mechanics: material performance degrades
- **cooling:** larger capacity is needed to cool more power
- ➔ intensive irradiation and test beam program over years including dedicated high intensity beams with LHC like rates and timing structure

Note: Plans for Super – LHC (~2015): SLHC = LHC x 10

Hybrid Pixel Assembly

Sensors

- n⁺ in n (oxygenated Si)
- wafer size (Ø 10 cm)
- ~200-250 µm thick
- **Electronics Chip**
 - chip size limited by yield ~1-2.5 cm²
 - wafer size (Ø 20 cm)

Hybridization

- PbSn or Indium bumps (wafer scale)
- IC wafers thinned after bumping to ~180 µm
- ,flip-chip' to mate the parts

CMS Pixel Modul SSI, 07/20/2006 (with Flex Hybrid and Controller Chip TBM)

In

Hybrid Pixel Assembly

Indium bumping process

Solder bumping process

b)

Spin coating and printing of Photoresist

Electroplating of Cu and PbSn

Reflow

d)

a)

Resist stripping and wet etching of the plating base

Chip

Sensor

SSI, 07/20/2006

particle interactions with lattice nuclei

1 MeV neutron damage

recoiling Si-atom can cause further defects → defect <u>clusters</u> (10nm x 200nm)

- 2. change of space charge in depleted region
 → change of effective doping concentration
- 3. trapping centers created
 → trapping of signal charge

particle interactions with lattice nuclei

i wev neutron damage

recoiling Si-atom can cause further defects → defect <u>clusters</u> (10nm x 200nm)

- generation/recombination levels in band gap
 → increase of leakage current
- 2. change of space charge in depleted region
 → change of effective doping concentration
- 3. trapping centers created
 → trapping of signal charge

Change of Depletion Voltage V_{dep} (N_{eff})

 "Type inversion": N_{eff} changes from positive to negative (Space Charge Sign Inversion)

fluence (NIEL) > 10¹⁵ n_{eq}/cm² total dose > 500 kGy

solution: oxygenated FZ silicon

necessary voltage

NIM-A 465 (2001) 60-69

 "Type inversion": N_{eff} changes from positive to negative (Space Charge Sign Inversion)

> fluence (NIEL) > 10¹⁵ n_{eq}/cm² total dose > 500 kGy

Pixel Sensors: isolation of pixel implants

p-stop

p-spray

moderated p-spray

highest E-fields after irradiation

E-fields decrease with irradiation

optimum configuration for overall voltage stability

Biasing of Pixel Sensors

punch through biasing

Biasing of Pixel Sensors

~ homogeneous charge collection after 10 years LHC

Measuring the effective depletion depth after irradiation

Measuring the effective depletion depth after irradiation 45min

Trapping after 10 yrs @ LHC

Use tilted tracks again ...

For non-irradiated sensors,the collected charge is uniform along the depth.

The charge yield yield as a function of the depth can be translated, via the drift velocity, in a carrier lifetime:

 τ_{e} = 4.1 \pm 0.3 \pm 0.5 ns

mean CCE after 10 yrs LHC ~ 80%
(with LHC type annealing scenario)

Pixel Frontend Chip

ATLAS FE-I3

- 0,25 µm CMOS technology
- pixel cell size: 50 x 400 μm²
- 18 columns x 160 rows = 2880 cells
- parallel processing in all cells
 - amplification
 - zero suppression

threshold

control

compensation

7-231

Functions in the cell (binary readout + "poor man's" analog)

- Integration of signal charge by charge sensitive amplifier
- Pulse shaping by feedback circuit with constant current feed back
- Hit detection by comparator
- ~5 bit analog information via "time over threshold"
- storage of address and time stamps in RAM at the periphery

Requirements on the electronics performance

<

<

small noise hit rate →

• $\sigma_{noise} \oplus \sigma_{threshold}$

• time stamp

- low noise and small threshold dispersion
- ~ 600 e⁻ @ a threshold of 3000 e⁻
 - 20 ns after BX for all signal heights

Distribution of pixel cell thresholds

Important / in-time threshold & efficiency

Pixel Frontend Chip

ATLAS FE-Chip

- 0,25 µm CMOS technology
- pixel cell size: 50 x 400 μm²
- 18 columns x 160 rows = 2880 cells
- parallel processing in all cells
 - amplification
 - zero suppression

end of column logic

- storage of hit information during trigger latency (2.5 μs)
- hit selection upon L1 trigger

L. Blanquart, P. Fischer et al., NIM-A 456 (2001) 217-231

ALTAS FE-chip readout architecture (animated)

- 40 MHz Gray coded clock transmitted to all cells
- Pixel cells generate hit information (address and time stamp) which are stored at the end of column
- hits are removed if no trigger conicidence occurs
- Hit information agreeing with L1 trigger time are read out

- Analogue circuits
- Digital readout circuits
- Registers used to store configuration bits
- Time information
- Trigger

ATLAS Pixel Chip: binary hit information with additional information on signal hight via ToT measurement (~4-5 bit)

CMS pixel-chip (analog readout)

additional storage of analog pulse height (sample/hold)

analog output signal → amplitude + row/column address coded in analog levels H.C. Kastli et al., e-print physics/0511166

CMS pixel-chip (analog readout)

• Overlay of 4160 pixel readouts (analog coded address levels)

H.C. Kastli et al., e-print physics/0511166

Radiation damage to the FE-electronics ... and cure

- Effects: generation of positive charges in the SiO₂ and defects in Si SiO₂ interface
- 1. Theshold shifts of transistors

quard-rings

→ DSM CMOS technologies with small structure sizes ($\leq 0,35 \mu$ m) and thin gate oxides (d_{ox} < 10 nm) → holes tunnel out

→ Layout of annular transistors with annular gate-electrodes +

2. Leakage currents under the field oxide

particle/radiation

Radiation damage to the FE-electronics ... and cure

radiation induced bit errors

("single event upsets" SEU)

large amounts of charge on circuit nodesby nuclear reactions, high track densities - can cause "bit-flip"

2 examples of error resistant logic cells

→ enlarge storage capacitances in SRAM cells: Q_{crit} = V_{threshold} · C

→ storage cells with redundancy (DICE SRAM cell)

Irradiated Modules after 1 MGy (20 years @ LHC)

Spatial resolution in irradiated assemblies

In-time track efficiency in irradiated assemblies

large in-time plateau for efficency margin

Main issue for ALICE: minimal material

In central HI collisions up to 8000 charged particles/ $|\eta|$ are expected.

radiation levels only ~ 5 kGy, $6x10^{12} n_{eq}^{2} / cm^{2}$ \rightarrow operation at room temperature possible !

Main Issue for ALICE: minimal material

very light weight Carbon Fibre support structure (200µm,0.1 X₀)

 sensor
 $200\mu m$

 IC
 150 μm

 cooling (C₄F₁₀) @ RT
 0.3% X₀

 (PHYNOX tubes, wall 40 μm)

total X_0 per layer ~ 0.9%

(ATLAS, CMS > 2%)

Hybrid Pixels / Ladders and Disks

- ATLAS
- minimal X₀ "C-C" structures
- cooling (pumped C_3F_8 : boil. point = -25⁰)
- T < -6^o C to limit damage from irradiation
- power dissipation: ~100W/stave

(ATLAS) ~15kW/detector

complex signal processing in cells

- zero suppression
- temporary storage of hits during L1 latency

```
radiation hardness to 10<sup>15</sup> n<sub>eq</sub>/cm<sup>2</sup>
```

```
spatial resolution ~ 10–15 µm
```

```
... but also
```

relatively large material budget: ~ 2% X₀ per layer (1% X₀ @ ALICE)

• cooling, services

complex and laborious module production

- bump-bonding / Flip-Chip → expensive
- many production steps

Conclusions

hybrid pixel detectors are the "state of the art" of pixel vertex detectors

spin-offs into imaging applications are abound

- X-ray pixel detectors (MPEC, MEDIPIX, CiX)
- X-ray astronomy (DEPFET, CdTe pixels)
- time resolved autoradiography
- ... many more

next challenges are around the corner

- Super-LHC
 - \square radiation fluences up to 10¹⁶ n_{eq}/cm² → new sensor types
 - \square "light weight" \rightarrow less power, new cooling, new mechanics
 - \bigtriangleup data band width \rightarrow 40 MHz \rightarrow >GHz
- Monolithic pixel detectors for ILC
 - ☑ (semi)-monolithic pixel detectors: MAPS, DEPFET
 - ☑ new technologies: SOI pixels, a-Si:H pixels

Join in ! There is enough to do !
SSI, 07/20/2006

Further Reading

- Rossi, Fischer, Rohe, Wermes, "Pixel Detectors: From Fundamentals to Applications", Springer Berlin-Heidelberg-New York, 2006, (ISBN 3-540-283324)
- G. Lutz, "Semiconductor Radiation Detectors", Springer Berlin-Heidelberg-New York, 1999.
- E. Heijne, "Semiconductor Micropattern Pixel Detectors: A Review of the Beginnings", NIM A465 (2001) 1-26
- N. Wermes, "Pixel Detectors for Tracking and theirs Spin-off in Imaging Applications" Nucl.Instrum.Meth.A541:150-165,2005, e-Print Archive: physics/0410282 and "Pixel detectors", in LECC2005 Heidelberg 2005, Electronics for LHC and future experiments e-print Archive: physics/0512037
- ATLAS Pixel Detector, Technical Design Report, CERN/LHCC/98-13 (1998) CMS Tracker Technical Design Report, CERN/LHCC/98-6 (1998) ALICE Inner Tracker System, Technical Design Report, CERN/LHCC/99-12 (1999)
- R. Horisberger, "Readout Architectures for Pixel Detectors", NIM A465 (2001) 148-152
 L. Blanquart et al., "Pixel Readout Electronics for LHC and Biomedical Applications", NIM A439 (2000) 403-412

Outline

1. Introduction

From gas-filled chambers to pixel vertex detectors

- 2. Hybrid Pixel Detectors for the LHC The Signal and the Noise in Pixel Detector
- 3. Making a Pixel Detector From sensor to module-ladder
- 4. Pixel R&D for Future Colliders (addendum) New developments for the ILC

Pixel Detectors for a Linear Collider

Time structure and rates

• 80 hits / mm^2 / bunch train @ r=1.5 cm

Requirements

- Thin (< 50 μ m, 0.1% X₀) \rightarrow monolithic
- > 500 Mpix with small cells (< $25x25 \mu m^2$)
- Fast (50 MHz/line, 25 kHz/frame ≈2Mpix)
- Low power (few Watts for full detector)
- Radiation tolerance < 4 kGy = 1/25 of LHC
- No trigger

Principle of (semi-) monolithic pixel detectors

generation and integration of signal in same substrate

- pn-diode \rightarrow Q_{Signal}
- collection diode (transistor gate)

→
$$U_{\text{Signal}} = Q_{\text{Signal}} / C_{g}$$

or $I_{\text{Signal}} = g_{m} \cdot Q_{\text{Signal}} / C_{g}$

- row wise selection of pixels
- column wise readout
- switch in cell (select/reset)

MAPS (CMOS active pixels)

• same CMOS substrate (low resistivity) for steering/readout electronics and Q - collection

DEPFET

 amplifying transistor on fully depleted bulk (high resistivity), separate steering and R/O chips

generation and integration of signal in same substrate

- pn-diode \rightarrow Q_{Signal}
- collection diode (transistor gate)

→
$$U_{\text{Signal}} = Q_{\text{Signal}} / C_{g}$$

or $I_{\text{Signal}} = g_{m} \cdot Q_{\text{Signal}} / C_{g}$

- row wise selection of pixels
- column wise readout
- switch in cell (select/reset)

MAPS (CMOS active pixels)

 same CMOS substrate (low resistivity) for steering/readout electronics and Q - collection

DEPFET

 amplifying transistor on fully depleted bulk (high resistivity), separate steering and R/O chips

column

readout

DEPFET

SSI, 07/20/2006

Conclusions

hybrid pixel detectors are the "state of the art" of pixel vertex detectors

spin-offs into imaging applications are abound

- X-ray pixel detectors (MPEC, MEDIPIX, CiX)
- X-ray astronomy (DEPFET, CdTe pixels)
- time resolved autoradiography
- ... many more

next challenges are around the corner

- Super-LHC
 - \square radiation fluences up to 10¹⁶ n_{eq}/cm² → new sensor types
 - \square "light weight" \rightarrow less power, new cooling, new mechanics
 - \bigtriangleup data band width \rightarrow 40 MHz \rightarrow >GHz
- Monolithic pixel detectors for ILC
 - ☑ (semi)-monolithic pixel detectors: MAPS, DEPFET
 - ☑ new technologies: SOI pixels, a-Si:H pixels

Join in ! There is enough to do !

SSI, 07/20/2006

Further Reading

- Rossi, Fischer, Rohe, Wermes, "Pixel Detectors: From Fundamentals to Applications", Springer Berlin-Heidelberg-New York, 2006, (ISBN 3-540-283324)
- G. Lutz, "Semiconductor Radiation Detectors", Springer Berlin-Heidelberg-New York, 1999.
- E. Heijne, "Semiconductor Micropattern Pixel Detectors: A Review of the Beginnings", NIM A465 (2001) 1-26
- N. Wermes, "Pixel Detectors for Tracking and theirs Spin-off in Imaging Applications" Nucl.Instrum.Meth.A541:150-165,2005, e-Print Archive: physics/0410282 and "Pixel detectors", in LECC2005 Heidelberg 2005, Electronics for LHC and future experiments e-print Archive: physics/0512037
- ATLAS Pixel Detector, Technical Design Report, CERN/LHCC/98-13 (1998) CMS Tracker Technical Design Report, CERN/LHCC/98-6 (1998) ALICE Inner Tracker System, Technical Design Report, CERN/LHCC/99-12 (1999)
- R. Horisberger, "Readout Architectures for Pixel Detectors", NIM A465 (2001) 148-152
 L. Blanquart et al., "Pixel Readout Electronics for LHC and Biomedical Applications", NIM A439 (2000) 403-412

Addendum Pixel Detectors for ILC

CMOS Active Pixels

Charge collecting diodes

- · charge coll. in several μ m thin epi-layer by thermal diffusion to n-well/epi junction
- \cdot p-wells and substrate highly doped \rightarrow charges kept between reflection boundaries
- signals processed by standard CMOS circuitry integrated on sensor
- only nMOS in active area (due to n-well/epi collection diode)
- Q-collection time ~100 ns (due to diffusion)
- incomplete Q-collection and small signals (< 10
- small pixel sizes (< 20x20 μ m²): a must and a

CMOS active pixels / R/O & performance

row selection \rightarrow column R/0

"standard" 3 transistor R/O scheme \rightarrow upgraded to include amplification, current memory (15 transitors, MIMOSA-7)

- small signal (< 1000e)
 => low noise needed
- detectors sizes up to 19.4 x 17.4 mm² (1Mpix)
- smallest pitch: 17 μ m

• spatial resolution < 2μ m

Detector image processing

1) Correlated Double Sampling (CDS): subtraction of two consecutive frames to eliminate base levels, 1/f and fixed pattern noise

2) Correction for pedestal (~leakage current) and common mode noise: extraction of the physical signal

Devis Contarato, Beam-test of CMOS sensors with 6 GeV electrons at DESY PIXEL 2005 Bonn, 05-08 September 2005

DEPFET pixels: high ohmic bulk

[TeSCA-Simulation]

(MOS)FET-Transistor integrated in every pixel (first amplification) Local potential minimum (for e⁻) under transistor channel Electrons are collected in "internal gate" and modulate the transistor-current Signal charge removed via clear contact output is a <u>current</u>

Monolithic Pixels / DEPFET pixels

(MOS)FET-Transistor integrated in every pixel (first amplification)

small C_D (fF) => very low noise (< 2e⁻ achieved in spectroscoopy devices, ~100e⁻ @ ILC) large signal => thin detectors (50 µm) \rightarrow S/N = 40-80 @ ILC low power => ~ few watts for entire detector (5 layers) \rightarrow save cooling (X₀)

detector sizes: 64 x 128 pixels, ~25x25 µm² cells

Operation of a DEPFET Matrix

ILC Detector Concept

Backup Slides

FE-chip wafer yields (0.25 µm CMOS)

tested:

shortcut

2 iZc erro

L < 5mA

🔲 missing token

ATLAS (FE-I3)

Feb 19 13 12 44 2004

ALICE (SPD-RO)

yields before thinning

82%

 $11 \times 7.4 \text{ mm}^2$ $180\mu\text{m}$ thick > 80%

>= 5 dcol defect 2...4 dcol defect

1 dcol defect

10 29 pixel defec

3...9 pixel defect

pixel defect

2 pixel defect

 $7.9 \times 9.8 \text{ mm}^2$ 200 μ m thick

51%

 $13.5 \times 15.8 \text{ mm}^2$ $150\mu\text{m}$ thick

E-fields in "p-stop" and "p-spray" in comparison

Fig. 2.40. The electric field maximum dependence on the potential difference between the isolating p-layer and the pixel n⁺-implant for different values of the oxide charge N_{Ox} . The evolution of the electric field during the lifetime of a detector is indicated by *arrows* [123]

Hybrid Pixels / BARE module yield (ATLAS)

~90% produced @ IZM & AMS

- ~ 2x20 modules/week
- rework fraction : 10% 15%
- rework efficiency:

solder ~100%, indium ~80%

- module reject fraction:

solder ~ 1%, indium ~14%

total need (3 layers): 1744 + spares total order @ bump vendors: ~2500 delivered (20.1.2006): ~2200 fully assembled (today): ~2000

Hybrid Pixels / module quality yield

Ranking levels: b-layer, layer 1, layer 2 overall ranking total: 1225 ranking based on: - inefficient pixel failed: 120; 10% - sensor quality - noise performance - threshold tuning b-layer - rebonding layer1 - BareModule rework layer2: 256; layer2 21% b-layer: 668; failed 54% layer2 layer1: 180; 15% layer1 b-layer

Making thin Sensors

• A novel technology to produce detectors with thin active area has been developed and prototyped (L. Andricek)

first 'dummy' samples: 50µm silicon with 350µm frame

thinned diode structures: leakage current: <1nA /cm²

Power consumption

Number of R/O channels @ TESLA:

L1 : 520x2x8 = 8320 L2-5: (880x2)x(8+12+16+20) = 98560 All: 106880 channels

• R/O Chip: 2mW / channel $\rightarrow 200 W$ (whole vtx-d)

• Sensor: $P_{DEPFET} = 5V \times 100 \ \mu A = 500 \ \mu W \rightarrow 50 \ W$

• Steering: 0.94mW /channelDC, 3.13mW / channel @ 50MHz

L1 : 2x3.13 + (3998x0.94) mW = 34WL2-5: $[2^*3.13 + (13538x0.94)] \times (8+12+16+20) \text{ mW} = 713W$ $\rightarrow \text{All: } 747 \text{ W}$

Total : 997W , 1/199 duty cycle : 5W