Muon Systems in LHC Experiments

SLAC Summer Institute 25-Jul-06

F. E. Taylor MIT

Signals and Irreducible Backgrounds

- Interesting processes have broad p_T spectra
- Most background are a low p_T

 Trigger thresholds p_T > 6 GeV/c and p_T > 20 GeV/c

ATLAS - Kortner - Durham 06

25-Jul-2006 SLAC Summer Institute

F.E. Taylor

LHC Muon System Design Goals

- Measure momenta $p_T \sim 5$ GeV/c to 1 TeV/c
 - Dictates strength & volume of B-field both are 'large'
 - Dictates tracking chamber resolution
- Clean muon identification
 - 15 to 20 λ filter required & is compatible with hadron shower containment of calorimetry
- Triggering & beam cross ID
 - Suppress 'minimum bias' events
 - Have to tag the beam cross of event dictates good timing resolution
- Choice of chamber technologies
 - Triggering and tracking technology should not be sensitive to backgrounds – such as neutrons and photons
 - Chambers should be 'thin'
 - Gaseous technologies practical for large areas required
 - Small size drift tubes (DT & MDT), Cathode Strip Chambers (CSC), Thin Gap Chambers (TGC), Resistive Plate Chambers (RPC)

Basis for Muon Filtering

dE/dx described by Bethe-Bloch and Radiative Effects

Basics of a Muon System

• Features

- Muon filter location & other functions
- Momentum dispersion shape of B-field & track sagitta
- Tracking technology
- Triggering technology & bunch cross tagging
- Integration with central tracker

Basics of Gaseous Detectors

- Ionization ~ 100 e-ion/cm in Ar @ 1 bar
- Electrons accelerate to anode
 - Gas amplification 10⁴ to 10⁵ in strong field around anode
- Drift time of electrons to wire depends on details of gas & HV
 - Typical value v ~ few $cm/\mu s$
- Properties of drift chambers simulated by programs 'MAGBOLTZ' & 'GARFIELD'
 - http://ref.web.cern.ch/ref/CERN/CNL/2000/001/garfield
 - http://ref.web.cern.ch/ref/CERN/CNL/2000/001/magboltz
- Experimental data on drift velocities, L-angles, etc.
 - http://cyclo.mit.edu/drift/www/

Conceptually Simple – But there are Details

- There are ~ 1000 physicists working on muon systems at the LHC
- Estimate that ATLAS & CMS have ~ 400 each

25-Jul-2006 SLAC Summer Institute

F.E. Taylor

ATLAS Muon System

The Muon System of CMS

Compact system

- Strong Central Solenoid (4T)
- Instrumented iron flux return

Compact Muon Solenoid

Muon System of ALICE

Heavy Ion Experiment – uses RPCs for muon trigger

Muon System of LHCb

• Muons are detected as 'tags' for heavy quark flavor decays

B-Fields ATLAS & CMS

Magnetic Technology	ATLAS	CMS
Inner Tracker		
B-field Outer Diameter Length B L of tracker itself Stored Energy	2.0 T 2.6 m 5.3 m 2 T m 38 MJ	4.0 T 6.5 m 12.9 m 4 T m 2,700 MJ
Muon System		96 464 464 15 15 15 15 15 15 15 15 15 15 15 15 15
<u>Barrel Region ∣η < 1</u> Diameters B L Stored Energy	9.4 to 20.1 m 3 T m 1,080 MJ	
<u>Endcap Region 1 < η < 2.7 (2.5)</u> Diameters B L Stored Energy <u>Solenoid Flux Return</u>	1.7 to 10.7 m 6 T m 206 MJ Fe Tile Cal	Fe ~ 2 T

ATLAS Toroidal B-Field

- <u>Muon spectrometer</u>
 - Physics requirements: $\Delta (\int B |d|) / \int B |d| < 4.10^{-3}$
- Magnetic materials
 - Materials in cavern (catwalks, feet, etc.)

Validation:

Muon Air-core Toroids:

Sets of B-sensors mounted on chambers will be used to model location of conductors => B-field

Central Solenoid: Will be mapped

Muon Trajectories in ATLAS

- Bending in every direction non-uniform field
 - Central solenoid bending in $\boldsymbol{\phi}$
 - Toroids bending in η

ATLAS Magnets

25-Jul-2006 SLAC Summer Institute

F.E. Taylor

B-Field of CMS

- Uniform Central Field
 @ 4 T
- Iron Flux return
 - Shields muon system
 - Provides opposite
 bending & allows standalone operation

ANSYS 5.2 AUG 27 1996

Muon Trajectories in CMS

- Single magnetic system central solenoid and iron flux return
- Precision central tracking & track linking muon system to inner detector

CMS Solenoid & Flux Return

Designer's Tool Kit - Resolution

- Resolution for momentum p
 - Momentum dispersion in B-field
 - Field Strength B
 - Length of measured track L
 - Chamber spatial resolution
 - Constant a
 - Resolution of chamber $\sigma(X_{ch})$
 - Multiple scattering in system
 - Constant α
 - Thickness of middle layer X_m
 - Energy loss fluctuations
 - Constant b
 - Thickness of dead mat'l X

'Toy Model' of a Muon System Resolution

ATLAS Muon System Momentum Resolution

- Toroid system provides most of resolution at high $p_T > 100$ GeV/c
- But there is an azimuthal dependence from non-uniform toroidal field

CMS Muon System Momentum Resolution

- Inner Tracker provides most of information with uniform central field
 - CMS slightly better at $\eta \sim 0$
 - ATLAS slightly better at high $|\eta|$

25-Jul-2006 SLAC Summer Institute

Muon Trigger

- The most challenging component of a muon system at the LHC
 - Acquire interesting events w/o excessive demands on DAQ bandwidth

- LVL1 Trigger Menu
 - Example ATLAS @ 10³⁴
 - Single muon p_T > 20 GeV/c 4 kHz
 - Dimuons p_T > 6 GeV/c
 1 kHz
- pp inelastic σtotal ≈ 80 mb
 - 25 'soft' collisions every beam crossing @ 10^{34} cm⁻²s⁻¹
- Higgs production $\sigma(H)$ BR ~ 1 to 50 fb
- Higgs events / year ~ 50 to 2500 for ϵ ~ 50%

10³³

×

2

0

LVL1 Trigger Rates

TDR

⁻rom CMS Physics

Muon Trigger - Basics

- Measurement made of 'trigger primitive' quickly, tag beam crossing, etc.
 - Define primitives around infinite momentum trajectory & allow deviations from that trajectory consistent with threshold
- Define trigger segments (ROI) in (η,ϕ) of width $(\delta\eta,\delta\phi)$

- Develop Coincidence Matrix between chambers

Trigger Latency-ATLAS			
Time-of-flight		3 BC	
Chamber response		1 BC	
Propagation inside ROI		2 BC	
Local processing		6 BC	
(η,φ) – Logic		3 BC	
Connection to Sector Logic		16 BC	
Sector Logic		5 BC	
Total	950 ns	<u>36 BC</u>	

25-Jul-2006 SLAC Summer Institute

ATLAS

F.E. Taylor

LVL1 Trigger System Layout - ATLAS

Technology & Layouts – ATLAS & CMS

Chamber Technology	ATLAS	CMS
Inner Tracker		
Outer radius of Tracker Technology Min (X/X ₀) η ~ 0 Max (X/X ₀) η ~ 1.7	107 cm Silicon & Straw Tubes 0.3 1.2	110 cm Silicon 0.4 1.5
Drift Tubes	MDT	DT
Coverage Number of chambers Number of channels Function	η < 2.0 inner, η < 2.7 middle & outer 1,170 354,000 Precision Measurement	η < 1.2 250 172,000 Precision Measurement, Trigger
Cathode Strip Chambers (CSC)		
Coverage Number of chambers Number of channels Function	2.0< η < 2.7 inner layer 32 31,000 Precision Measurement, 2nd Coordinate	1.2< η < 2.4 468 500,000 Precision Measurement, Trigger
Resistive Plate Chambers (RPC)		
Coverage Number of chambers Number of channels Function	η <1.05 1,112 374,000 Triggering, 2nd Coordinate	η < 2.1 912 160,000 Triggering
Thin Gap Chambers (TGC)		
Coverage Number of chambers Number of channels Function	1.05< η < 2.4 1,578 320,000 Triggering, 2nd Coordinate	

Technologies of ATLAS

Technologies of CMS

Resistive Plate Chambers

- Intrinsically fast response ~ 1 to 2 ns for beam cross tag
- Provide both η and ϕ information
- Deployed in ALICE, ATLAS and CMS
- Although ~ 25 years old parameters still being studied

ATLAS RPC System

Three RPC detector layers:

- 2 in the middle station, 1 in the outer (380 MDT/RPC stations)
- Each layer:
 - 2 gas gaps and 4 readout planes for each detector element
 - Eta and Phi read-out copper strips panels, pitch ranging from 26.4 to 33.9 mm
- Each gap:
 - 2 mm gas gap with plastic laminate electrodes
 - plate resistivity : ~ 1- $4x10^{10} \Omega cm$
 - Gas mixture: (C₂H₂F₄) 94.7% (C₄H₁₀) 5% (SF₆) 0.3%
- Performance:
 - RPCs working in avalanche mode
 - Efficiency: > 98%
 - Time resolution: ~ 1-2 ns
 - Spatial resolution: 5-10 mm
 - Rate capability: ~ 1000 Hz/cm²

F.E. Taylor

For Stable Operation of RPC

• Control temperature

- Noise and current increase with T
 - Both an ohmic and gas multiplicative component (gas density)
- Control gas
 - Including small amount of water inside vs. outside
- Bubble gas through water to capture HF from radiation decomposition of gas
 - Gas system will be closed-loop
- Tested in GIF (CERN) to last 10 years @ 10³⁴ – but have to be very careful

25-Ji

CMS DT-RPC Barrel Chambers

RPC-DT Coupling

Insertion in CMS Flux Return

> CMS Barrel Wheel

ATLAS Barrel Station Integration RPC/MDT/LVL1

Integration with the MDT

Thin Gap Chamber (TGC) Trigger ATLAS EC

- Basic structure a MWPC with graphite cathode
- Signal is read from both anode wires and cathode strips
- Gap between ano-cath is 1.4 mm
- Wire spacing is 1.8 mm
- 50 μ m tungsten wire
- Gas CO₂:n-Pentane (55:45)
- Efficient 25 ns tag
 - G. Mikenberg Weizmann/CERN

ATLAS Thin Gap Chamber Wheels

- TGCs made in Israel, Japan, China for EC Trigger
- Installed on 'Sectors' of wheels in B180 @ CERN
 - A total of 6 wheels, 12 sectors each

Chambers, alignment & trigger electronics mounted & commissioned on sectors in B180

CSC - Principle of Operation

Gas: $Ar:CO_2 \ 80:20$ **ATLAS** s = d = 2.54 mm W = 5.6 mmV. Polychronakos-BNL ATLAS

- Determine muon position by interpolating the charge on 3 to 5 adjacent strips
- Σ Qi ~ Landau Distribution
- Measure Q1, Q2, Q3... with 150:1 SNR to get σ_x ~ 60 $\mu m.$
- Second set of y-strips measure transverse coordinate to ~ 1 cm.
- Position accuracy unaffected by *gas gain* or *drift time* variations.
- Accurate *intercalibration* of adjacent channels essential.

CSC Design Parameters - CMS

EMU Cathode Strip Chamber

wire plane (a few wires shown) cathode plane with strips

• Overall size:

- 7 panels form
- Anode-Cathode:
- Anode wires:
- Wire spacing:
- Readout group:
- Cathode strips:
- Gas:
- Nominal HV:
- Gas Gain:
- Trigg Resol'n
- Track Resol'n

3.3 x 1.5/0.8 m² (trapoz) 6 gas gaps of 9.5 mm h=4.75 mm d=50 μ m, gold-plated W s=3.2 mm pitch 5 to 16 wires (1.5-5 cm) w=8-16 mm wide (1 side) Ar+CO₂+CF₄=40+50+10 3.6 kV 10⁵ 2 mm 100 μ m

A. Korytov UoF - CMS

7 trapezoidal panels form 6 gas gaps

Final Assembly & Test – ATLAS & CMS

25-Jul-2006 SLAC Summer Institute

F.E. Taylor

CSCs in CMS Endcap

Drift Tubes - ATLAS

- MDT Deployed in Barrel & Endcap of ATLAS
 - Barrel middle and outer layers integrated with RPC
 - Inner barrel and all 3 layers of EC have MDTs

Gas: Ar:CO₂ 93:7, Pressure: 3 bar Tubes: 3 cm dia, Wire: 50 μm W-Re (Au) Gain: 2x10⁴, Max Drift: ~ 710 ns Resol'n (tube): ~ 80 μm

Drift Tubes - CMS

- Drift Tubes deployed in CMS Barrel
 - Provides both ϕ (bend) and η (2nd coordinate)
 - Mean timer finds tracks and determines bunch crossing
 - Integrated with RPC stations that fast trigger

F.E. Taylor

Chamber Alignment

- A large enterprise for both ATLAS & CMS
 - Measure distortions of chambers themselves 'in-plane' system
 - Measure location of chambers w.r.t. grid, barrel vs. endcap
 - Monitor location vs. time and correct for locations in track reconstruction

Radiation Environment

- LHC neutrons & soft gammas
 - Inner tracker & muon endcaps
- Sensitivity to bkg.
 - Aging of chambers & electronics
 - Degradation of pattern recognition in presence of bkg.
 - Electronics sufficiently rad-hard
- The 'trip through GIF' @ CERN
 - ¹³⁷Cs gamma source
 - RPC, CSCs, DT, MDTs, TGCs
- Extensive simulations performed

 FLUKA vs. GCALOR but put in 5X safety

Backgrounds in ATLAS Muons

- p-p collision produces many secondaries from interactions in collimators and calorimeters
 - Use FLUKA and GCALOR to estimate backgrounds photons, neutrons, charged particles (e+-, π, p)
 - Chambers have small efficiency for photons, neutrons ~ 10^{-3} to few 10^{-2}
 - Electronics should be sufficiently radiation hard

Installation & Commissioning

ATLAS

- Installation of barrel and endcaps underway
 - ~ 50% of barrel stations installed (to be complete by end '06)
 - TGC & MDT wheels under assembly (B180) and are being (complete in spring '07)
- Chamber services are being installed & commissioned
- Barrel toroid soon to be tested in situ
- Endcap toroids installed & tested by Apr-07
- Beam pipe closes Aug-07
- First running by end of '07, 14 TeV in '08

CMS

- Barrel and endcap installation done on surface @Pt 5
 - >3/5 wheels DT-RPC stations installed
 - >90% EC disks CSCs installed
- Testing of system done on surface
- Solenoid cold & soon to be tested
- Lowering of pieces in Oct -06 & assembly complete by Aug-07
- Connection to services and final commissioning in pit
- Beam pipe closes Aug-07
- First running by end of '07, 14 TeV in '08

ATLAS Muons – Installation

Thin Gap Ch 1 installation in UX15 – for EC trigger

Barrel Chamber installations in UX15

Commissioning CMS Muon System

- Cosmic ray 'Challenge' with B-field
 - Test operation of essential systems prior to lowering in Pit
 - Cosmic tracks data taken with trigger

ATLAS Commissioning System in UX15

- RPC operated with the correct gas mixture at HV
 - Trigger signals from the LVL1 RPC trigger were delivered with a 50 Hz rate.
 - Data were taken reading-out all the RPCs of sector 13 and MDTs

E. Pasqualucci talk -Stockholm

ATLAS Atlantis 2006-07-06 20:47:56 CEST Event: JiveXML 1015 00004 Run: 1015 Event

Z (m)

Conclusions

- Muon system may play a key role in Physics @ LHC
 - Many theorized channels have muon signatures
- All 4 experiments have made large investments
- ATLAS & CMS have complementary designs
 - Air-core toroid vs. Solenoid with instrumented flux return
 - Simulated performance roughly comparable for full systems
 - Major challenge is putting it all together & making it work
- Large effort continuing on Software Development
 - Goals are to tune the trigger and reconstruction algorithms
 - Use commissioning data to test algorithms
 - Prepare for first Beam
 - Tuning signals & 'warm-up' physics
 - In a few years the LHC program should be mostly data analysis

"Who ordered that" – I.I. Rabi

- Muons first detected in cosmic rays in a search for the mediator of strong interactions proposed by H. Yukawa, *Proc. Phys-Math. Soc. Japan17*, 48 (1935)
 - First observed by:
 - S. Neddermeyer and C.D. Anderson, *Phys. Rev.* 51, 884 (1937); J.C. Street and E. C. Stevenson, *Phys. Rev.* 51, 1005 (1937); Y. Nishina, M. Takeuti and T. Ichinomiya, *Phys. Rev.* 52, 1198 (1937)
 - The mass of detected particle was about right (200 x M_e) but far more penetrating by 12 orders-of-magnitude (Fermi, Teller, Weisskopf)
- Properties of Muon were that of a 'heavy' electron and remained a mystery for some time
 - What was observed was the <u>first member</u> of the <u>Second</u> <u>Generation</u>
- A mystery still perhaps muon detection @ LHC will help answer I.I. Rabi

μ

References

- ATLAS Muon TDR
- CMS Physics TDR
- General-Purpose Detectors for the Large Hadron Collider, Froidevaux & Sphicas
- Anna Di Ciaccio, Roma II
- Andrei Korytov IEEE 2004 CMS CSC EC
- ATLAS Radiation Backgrounds ATL-GEN-2005-001