Triggering (at the LHC)

Paris Sphicas
CERN/PH and Univ. of Athens
SLAC Summer Institute 2006
July 2006

- Introduction
 - LHC: The machine and the physics
 - Trigger/DAQ architectures and tradeoffs

- Level-1 Trigger
 - Architectures, elements, performance

- DAQ
 - Readout, Event-Building, Control & monitor

- High-Level trigger
 - Farms, algorithms
LHC: physics goals and machine parameters
Collisions at the LHC: summary

- **Proton - Proton**: 2804 bunch/beam
- **Protons/bunch**: 10^{11}
- **Beam energy**: 7 TeV (7×10^{12} eV)
- **Luminosity**: 10^{34} cm$^{-2}$ s$^{-1}$
- **Crossing rate**: 40 MHz
- **Collision rate**: $\approx 10^7$-10^9
- **New physics rate**: ≈ 0.00001 Hz
- **Event selection**: 1 in $10,000,000,000,000$
Higgs boson production at LHC

- Primary physics goal: explore the physics of Electroweak symmetry breaking.
 - In the SM: the Higgs
 - Energy of the collider: dictated by machine radius and magnets
 - Luminosity: determine from requirements

- Higgs mass: unknown; could be up to \(\sim 1\) TeV/c\(^2\).
 - Wish: \(\sim 20-30 \) events/year at highest masses

- Luminosity needed: \(10^{34} \) cm\(^{-2}\) s\(^{-1}\)
 - At \(10^{11} \) protons/bunch, 27 km (i.e. 90 \(\mu \)s), need \(\sim 3000 \) bunches
LHC will have ~3600 bunches
 - And same length as LEP (27 km)
 - Distance between bunches: 27km/3600=7.5m
 - Distance between bunches in time: 7.5m/c=25ns

- LEP: e⁺e⁻ Crossing rate 30 kHz
 - 22µs

- Tevatron Run I
 - 3.5µs

- Tevatron Run II
 - 396ns

- LHC: pp Crossing rate 40 MHz
 - 25ns

P. Sphicas
Triggering

SSI 2006
July 2006
pp cross section and min. bias

- **# of interactions/crossing:**
 - **Interactions/s:**
 - $\text{Lum} = 10^{34} \text{ cm}^{-2}\text{s}^{-1} = 10^7 \text{mb}^{-1}\text{Hz}$
 - $\sigma(pp) = 70 \text{ mb}$
 - Interaction Rate, $R = 7 \times 10^8 \text{ Hz}$
 - **Events/beam crossing:**
 - $\Delta t = 25 \text{ ns} = 2.5 \times 10^{-8} \text{ s}$
 - Interactions/crossing = 17.5
 - **Not all p bunches are full**
 - 2835 out of 3564 only
 - Interactions/”active” crossing = $17.5 \times 3564/2835 = 23$

Operating conditions (summary):
1) A "good" event containing a Higgs decay +
2) ≈ 20 extra "bad" (minimum bias) interactions
pp collisions at 14 TeV at 10^{34} cm^{-2}s^{-1}

- 20 min bias events overlap
- \(H \rightarrow ZZ \)
- \(Z \rightarrow \mu \mu \)
- \(H \rightarrow 4 \) muons: the cleanest ("golden") signature

Reconstructed tracks with \(p_T > 25 \) GeV

And this (not the H though…) repeats every 25 ns…
Impact on detector design

- LHC detectors must have fast response
 - Avoid integrating over many bunch crossings (“pile-up”)
 - Typical response time: 20-50 ns
 → integrate over 1-2 bunch crossings → pile-up of 25-50 minimum-bias events → very challenging readout electronics

- LHC detectors must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H → γγ decays)
 → large number of electronic channels

- LHC detectors must be radiation resistant:
 - high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters:
 - up to 10^{17} n/cm² in 10 years of LHC operation
 - up to 10^7 Gy (1 Gy = unit of absorbed energy = 1 Joule/Kg)
Pile-up

- “In-time” pile-up: particles from the same crossing but from a different pp interaction

- Long detector response/pulse shapes:
 - “Out-of-time” pile-up: left-over signals from interactions in previous crossings
 - Need “bunch-crossing identification”

In-time pulse

super-
impose

Out-of-time pulses

P. Sphicas
Triggering

SSI 2006
July 2006
Time of Flight

c=30cm/ns; in 25ns, s=7.5m
Selectivity: the physics

- Cross sections of physics processes vary over many orders of magnitude
 - Inelastic: 10^9 Hz
 - $W \rightarrow \ell \nu$: 10^2 Hz
 - $t\bar{t}$ production: 10 Hz
 - Higgs (100 GeV/c2): 0.1 Hz
 - Higgs (600 GeV/c2): 10^{-2} Hz

- QCD background
 - Jet $E_T \sim 250$ GeV: rate = 1 kHz
 - Jet fluctuations \rightarrow electron bkg
 - Decays of $K, \pi, b \rightarrow$ muon bkg

- Selection needed: $1:10^{10-11}$
 - Before branching fractions...
Physics selection at the LHC

LEVEL-1 Trigger
Hardwired processors (ASIC, FPGA)
Pipelined massive parallel

HIGH LEVEL Triggers
Farms of processors

Reconstruction & Analysis
Tier 0/1/2 Centers

ON-line
OFF-line
Trigger/DAQ requirements/challenges

- N (channels) $\sim O(10^7)$; ≈ 20 interactions every 25 ns
 - need huge number of connections
 - need information super-highway
- Calorimeter information should correspond to tracker info
 - need to synchronize detector elements to (better than) 25 ns
- In some cases: detector signal/time of flight > 25 ns
 - integrate more than one bunch crossing's worth of information
 - need to identify bunch crossing...
- Can store data at $\approx 10^2$ Hz
 - need to reject most interactions
- It's On-Line (cannot go back and recover events)
 - need to monitor selection
Trigger/DAQ: architectures
Online Selection Flow in pp

- Level-1 trigger: reduce 40 MHz to 10^5 Hz
 - This step is always there
 - Upstream: still need to get to 10^2 Hz; in 1 or 2 extra steps

```
Front end pipelines
Readout buffers
Switching network
Processor farms
```

"Traditional": 3 physical levels

```
Front end pipelines
Readout buffers
Switching network
Processor farms
```

CMS: 2 physical levels
Three physical entities

- Additional processing in LV-2: reduce network bandwidth requirements

![Diagram showing the flow of data through different levels of processing and the timeline of various processes.]

- **Level-1 Trigger**: 40 MHz, 10^5 Hz, 10^3 Hz, 10 Gb/s
- **Level-2**: 10^2 Hz
- **Level-3**: 25 ns, 1 µs, 1 ms, 1 sec

QED
- W, Z
- Top
- Z*
- Higgs

Available processing time
- High Level Triggers 1 kHz
- Specialized processors (feature extraction and global logic)
- Massively Parallel Pipelined Logic Systems
- LEVEL-1 Trigger 40 MHz
- Hardwired processors (ASIC, FPGA)

Event Manager
- Level-1
- Level-2
- Level-3

Detector Frontend
- Readout
- Builder Network
- Computing services

Farms
- Switch

Switches
- Level-1 to Level-2
- Level-2 to Level-3

Switches
- Event Manager

Processing Rates
- 10^8 Hz
- 10^6 Hz
- 10^4 Hz
- 10^2 Hz
- 10^1 Hz
- 10^0 Hz
Two physical entities

- Reduce number of building blocks
- Rely on commercial components (especially processing and communications)
Comparison of 2 vs 3 physical levels

- **Three Physical Levels**
 - **Investment in:**
 - Control Logic
 - Specialized processors

- **Two Physical Levels**
 - **Investment in:**
 - Bandwidth
 - Commercial Processors
Trigger/DAQ parameters: summary

<table>
<thead>
<tr>
<th>Experiment</th>
<th>No. Levels</th>
<th>Level-1 Trigger Rate (Hz)</th>
<th>Event Size (Byte)</th>
<th>Readout Bandw.(GB/s)</th>
<th>Filter Out MB/s (Event/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>3</td>
<td>10^5</td>
<td>10^6</td>
<td>10</td>
<td>100 (10^2)</td>
</tr>
<tr>
<td></td>
<td>LV-2</td>
<td>10^3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMS</td>
<td>2</td>
<td>10^5</td>
<td>10^6</td>
<td>100</td>
<td>100 (10^2)</td>
</tr>
<tr>
<td>LHCb</td>
<td>3</td>
<td>LV-0 10^6</td>
<td>2x10^5</td>
<td>4</td>
<td>40 (2x10^2)</td>
</tr>
<tr>
<td></td>
<td>LV-1</td>
<td>4 10^4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALICE</td>
<td>4</td>
<td>Pp-Pp 500</td>
<td>5x10^7</td>
<td>5</td>
<td>1250 (10^2)</td>
</tr>
<tr>
<td></td>
<td>p-p</td>
<td>10^3</td>
<td>2x10^6</td>
<td></td>
<td>200 (10^2)</td>
</tr>
</tbody>
</table>

P. Sphicas
Triggering
SSI 2006
July 2006
Trigger/DAQ systems: grand view

ATLAS

- Levels: 3
- LV-1 rate: 100 kHz
- Readout: 10 GB/s
- Storage: 100 MB/s

ALICE

- Levels: 4
- LV-1 rate: 500 kHz
- Readout: 5 GB/s
- Storage: 1250 MB/s

CMS

- Levels: 2
- LV-1 rate: 100 kHz
- Readout: 100 GB/s
- Storage: 100 MB/s

LHCb

- Levels: 3
- LV-1 rate: 1 MHz
- Readout: 4 GB/s
- Storage: 40 MB/s

P. Sphicas

Triggering

SSI 2006

July 2006
Level-1 Trigger
Physics selection at the LHC

- **LEVEL-1 Trigger**
 - Hardwired processors (ASIC, FPGA)
 - Pipelined massive parallel

- **HIGH LEVEL Triggers**
 - Farms of processors

- **Reconstruction & Analysis**
 - Tier 0/1/2 Centers

- ON-line vs OFF-line

- Time scales:
 - 25 ns
 - 3 µs
 - ms
 - sec
 - hour
 - year

- Data sizes:
 - 10^9 Giga
 - 10^12 Tera
 - 10^15 Petabit

P. Sphicas

Triggering

SSI 2006

July 2006
Physics facts:
- pp collisions produce mainly hadrons with $P_T \sim 1$ GeV
- Interesting physics (old and new) has particles (leptons and hadrons) with large transverse momenta:
 - $W \rightarrow e\nu$: $M(W)=80$ GeV/c2; $P_T(e) \sim 30-40$ GeV
 - $H(120$ GeV$) \rightarrow \gamma\gamma$: $P_T(\gamma) \sim 50-60$ GeV

Basic requirements:
- Impose high thresholds on particles
 - Implies distinguishing particle types; possible for electrons, muons and “jets”; beyond that, need complex algorithms
- Typical thresholds:
 - Single muon with $P_T > 20$ GeV (rate ~ 10 kHz)
 - Dimuons with $P_T > 6$ (rate ~ 1 kHz)
 - Single e/γ with $P_T > 30$ GeV (rate $\sim 10-20$ kHz)
 - Dielectrons with $P_T > 20$ GeV (rate ~ 5 kHz)
 - Single jet with $P_T > 300$ GeV (rate $\sim 0.2-0.4$ kHz)
Particle signatures in the detector(s)

Use prompt data (calorimetry and muons) to identify:
High p_t electron, muon, jets, missing E_T

CALORIMETERS
Cluster finding and energy deposition evaluation

New data every 25 ns
Decision latency ~ μs

MUON System
Segment and track finding

φ η

γ e

ν μ

n p
At Level-1: only calo and muon info

- Pattern recognition much faster/easier

- Compare to tracker info
 - Complex algorithms
 - Huge amounts of data
 - Need to link sub-detectors

- Simple algorithms
- Small amounts of data
- Local decisions
Level-1 Trigger: decision loop

- Synchronous 40 MHz digital system
 - Typical: 160 MHz internal pipeline
 - Latencies:
 - Readout + processing: < 1μs
 - Signal collection & distribution: ≈ 2μs
- At Lvl-1: process only calo+μ info

Diagram

- Global Trigger 1
- Local level-1 trigger
 - Primitive e, γ, jets, μ
 - Pipeline delay (≈ 3 μs)
 - ≈ 2-3 μs latency loop

- Front-End Digitizer
- Trigger Primitive Generator
- Accept/Reject LV-1
Signaling and pipelining

Detector front end

Front end pipelines

Readout buffers

Light cone

Lvl-1

Control Room

Experiment

TIME

SPACE
Detector Readout: front-end types

ANALOG pipeline
- Shaper
- ASP
- Pipeline
- MUX
- ASP
- ADC
- DSP

DIGITAL Asynchronous
- LVL 1
- Bunch#
- Discr.
- Bunch#
- Pipeline
- DSP
- ADC
- Shaper

DIGITAL Synchronous
- 40 MHz
- Readout
- Pipeline
- DSP
- ADC
- Shaper
Clock distribution & synchronization

- Trigger, Timing & Control (TTC); from RD12

Global Trigger 1, Local level-1
Primitive e, g, jets, µ

Clock distribution & synchronization

Total latency - 128 BX

LHC Bunch Crossing number (from TTC)

Anode LCT Bunch Crossing number (data)

Clock phase adjustment

Programmable delays (in BX units)

Layout delays

t_{DET} + ALCT decision time
Lvl-1 trigger architecture: ATLAS

CMS ~ similar

~7000 calorimeter trigger towers
(analogue sum on detectors)

Calorimeter trigger

Pre-Processor
(analogue → E_T)

Jet / Energy-sum Processor

Cluster Processor
(e/γ, τ/h)

Muon trigger

Muon Barrel Trigger

Muon End-cap Trigger

Muon central trigger processor

Central Trigger Processor (CTP)

Timing, Trigger, Control (TTC)

Radiation tolerance, cooling, grounding, magnetic field, no access

O(1M) RPC/TGC channels

Latency limit 2.5 μs
Lvl-1 trigger data flow: ATLAS

- **On-detector:**
 - analog sums to form trigger towers

- **Off-detector:**
 - Receive data, digitize, identify bunch crossing, compute E_T
 - Send data to Cluster Processor and Jet Energy Processor crates

- **Local processor crates:**
 - Form sums/comparisons as per algorithm, decide on objects found

- **Global Trigger: decision**
Lvl-1 Calo Trigger: e/γ algorithm (CMS)

\[E_T(\text{Hit}) + \max E_T(\text{EM towers}) > E_T^{\min} \]

\[E_T(\text{EM tower}) / E_T(\text{Hadron tower}) < H_o E^{\max} \]

At least 1 \[E_T(\text{EM tower}) < E_{iso}^{\max} \]

Fine-grain: \[\geq 1(\text{hits}) > R \ E_T^{\min} \]
Lvl-1 Calo e/γ trigger: performance

- Efficiencies and Trigger Rates

![Graphs showing efficiency and trigger rates for Lvl-1 Calo e/γ trigger.](image-url)
Lvl-1 jet and τ triggers

- Issues are jet energy resolution and tau identification
 - Single, double, triple and quad thresholds possible
 - Possible also to cut on jet multiplicities
 - Also ETmiss, SET and SET(jets) triggers

Sliding window:
- granularity is 4x4 towers = trigger region
- jet E_T summed in 3x3 regions \(\Delta \eta, \Delta \phi = 1.04 \)
Lvl-1 muon trigger

- The goal: measure momentum online
 - Steeplly falling spectrum; resolution costs!

- The issue: speed
 - ATLAS: dedicated muon chambers (RPC and TGC)
 - CMS: RPC added to DT and CSC (which provide standalone trigger)

![Diagram of Lvl-1 muon trigger]

- Threshold \(\mu T_p \)
- Rate [Hz]
- \(\times 10^{33} \) cm\(^{-2}\)s\(^{-1}\)
- 4 kHz
- 30 Hz
Lvl-1 muon trigger (CMS)

Drift Tubes
- Meantimers recognize tracks and form vector / quartet.
- Correlator combines them into one vector / station.
- Hit strips of 6 layers form a vector.

CSC
- Comparators give 1/2-strip resol.

Hardware implementation:
- ASICs for Trigger Primitive Generators
- FPGAs for Track Finder processors

- Extrapolation: using look-up tables
- Track Assembler: link track segment-pairs to tracks, cancel fakes
- Assignment: P_T (5 bits), charge, η (6 bits), ϕ (8 bits), quality (3 bits)
Lvl-1 muon trigger (CMS)

Pattern of strips hit: Compared to predefined patterns corresponding to various p_T

Implemented in FPGAs
Global muon trigger (CMS)

- Combine results from RPC, CSC and DT triggers
- Match muon candidates from different trigger systems; use complementarity of detectors
- Improve efficiency and rate
- Assign muon isolation
- Deliver the 4 best (highest P_T, highest-quality) muons to Global Trigger
- Pt resolution:
 - 18% barrel
 - 35% endcaps
- Efficiency: ~ 97%
Technologies in Level-1 systems

- **ASICS (Application-Specific Integrated Circuits) used in some cases**
 - Highest-performance option, better radiation tolerance and lower power consumption (a plus for on-detector electronics)

- **FPGAs (Field-Programmable Gate Arrays) used throughout all systems**
 - Impressive evolution with time. Large gate counts and operating at 40 MHz (and beyond)
 - Biggest advantage: flexibility
 - Can modify algorithms (and their parameters) in situ

- **Communication technologies**
 - High-speed serial links (copper or fiber)
 - LVDS up to 10 m and 400 Mb/s; HP G-link, Vitesse for longer distances and Gb/s transmission
 - Backplanes
 - Very large number of connections, multiplexing data
 - operating at ~160 Mb/s
Lvl-1 Calo Trigger: prototypes

Trigger Crate
(160 MHz backplane)

Receiver Card

Links

Electron (isolation) Card
Bunch-crossing identification

- Need to extract quantities of the bunch-crossing in question (and identify the xing)
- FIR (finite impulse response filter)
 - Feed LUT to get E_T
 - Feeds peak-finder to identify bunch-xing
 - Special handling of very large pulses (most interesting physics…)
- Can be done in an ASIC (e.g. ATLAS)
Global Trigger

- A very large OR-AND network that allows for the specification of complex conditions:
 - 1 electron with $P_T > 20$ GeV OR 2 electrons with $P_T > 14$ GeV OR 1 electron with $P_T > 16$ and one jet with $P_T > 40$ GeV...
 - The top-level logic requirements (e.g. 2 electrons) constitute the “trigger-table” of the experiment
 - Allocating this rate is a complex process that involves the optimization of physics efficiencies vs backgrounds, rates and machine conditions
 → More on this in the HLT part
Lvl-1 trigger: summary

- Some challenges of unprecedented scale
 - Interaction rate and selectivity
 - Number of channels and synchronization
 - Pile-up and bunch-crossing identification
 - Deciding on the fate of an event given \(\sim 3 \, \mu s \)
 - Of which most is spent in transportation

- Trigger levels: the set of successive approximations (at the ultimate save-or-kill decision)
 - Number of physical levels varies with architecture/experiment

- Level-1 is always there, reduces 40 MHz to 40-100 kHz
 - Level-0 may be used to (a) reduce initial rate to \(\sim 1 \)MHz allow for slightly more complex processing (e.g. simple tracking)
DAQ system
Physics selection at the LHC

LEVEL-1 Trigger
Hardwired processors (ASIC, FPGA)
Pipelined massive parallel

HIGH LEVEL Triggers
Farms of processors

DAQ

Reconstruction&ANALYSIS
TIER0/1/2 Centers

ON-line
OFF-line

P. Sphicas
Triggering

SSI 2006
July 2006
Online Selection Flow in pp

- **LEVEL-1 TRIGGER**
 - 40 MHz COLLISION RATE
 - 75 kHz

- **DETECTOR CHANNELS**
 - Charge
 - Time
 - Pattern

- **16 Million channels**
- **3 Gigacell buffers**
- **1 Megabyte EVENT DATA**

- **1 Terabit/s READOUT**
 - 50,000 data channels

- **500 Gigabit/s**
 - SWITCH NETWORK

- **200 Gigabyte BUFFERS**
 - ~ 400 Readout memories

- **500 Gigabit/s**
 - 100 Hz FILTERED EVENT
 - 5 TeraIPS 400 CPU farms
 - EVENT FILTER

- **100 Hz**
 - FILTERED EVENT
 - Gigabit/s
 - SERVICE LAN

- **Computing Services**

- **Energy Tracks**

- **PETabyte ARCHIVES**

EVENT FILTER
A set of high performance commercial processors organized into many farms convenient for on-line and off-line applications.

EVENT BUILDER
A large switching network (400+400 ports) with total throughput ~ 400 Gbit/s forms the interconnection between the sources (deep buffers) and the destinations (buffers before farm CPUs). The Event Manager distributes event building commands (assigns events to destinations).
Trigger/DAQ systems: grand view

ATLAS
- **Levels**: 3
- **LV-1 rate**: 100 kHz
- **Readout**: 10 GB/s
- **Storage**: 100 MB/s

ALICE
- **Levels**: 4
- **LV-1 rate**: 500 Hz
- **Readout**: 5 GB/s
- **Storage**: 1250 MB/s

CMS
- **Levels**: 2
- **LV-1 rate**: 100 kHz
- **Readout**: 100 GB/s
- **Storage**: 100 MB/s

LHCb
- **Levels**: 3
- **LV-1 rate**: 1 MHz
- **Readout**: 4 GB/s
- **Storage**: 40 MB/s

P. Sphicas
Triggering

SSI 2006
July 2006
Readout types

- **Analog MUX**
 - 40 MHz
 - Level-1
 - 1
 - Analog fibers: ~60000
 - Digital fibers: ~1000

- **MUX/ADC**
 - 40 MHz
 - Level-1
 - Rx
 - Analog fibers: ~60000
 - Digital fibers: ~1000

- **Hit Finder**
 - 40 MHz
 - Level-1
 - N buffers
 - Analog fibers: ~80000
 - Digital fibers: ~1000

- **Tracker**
 - 40 MHz
 - Tag
 - SP
 - High occupancy

- **Preshower**
 - 40 MHz
 - T1 T2
 - High occupancy

- **Calorimeters**
 - 40 MHz
 - 1
 - Level-1
 - Digital fibers: ~1000
 - Low occupancy

- **PIXELs**
 - 40 MHz
 - Tag
 - SP
 - Low occupancy

- **CSC**
 - 40 MHz
 - Tag
 - SP
 - Low occupancy

- **DT**
 - 40 MHz
 - Tag
 - SP
 - Low occupancy
Need standard interface to front-ends

- Large number of independent modules

DAQ
Event Building

- Form full-event-data buffers from fragments in the readout. Must interconnect data sources/destinations.

Event fragments:
Event data fragments are stored in separated physical memory systems

Full events: Full event data are stored into one physical memory system associated to a processing unit

Hardware:
- Fabric of switches for builder networks
- PC motherboards for data Source/Destination nodes
Barrel-shifting with variable-size events

- **Demonstrator**
 - Fixed-block-size with barrel-shifter
 - Basic idea taken from ATM (and time-division-muxing)
 - As seen in composite-switch analysis, this should work for large N as well
 - Currently testing on 64x64... (originally: used simulation for \(N \approx 500\); now ~obsolete)
Detector readout & 3D-EVB

FrontEnd Readout Link (512 x 5 Gb/s)

Fed Builder: Random traffic

8 x 8 FED Builder (64 units)

Readout Builder: Barrel shifter

Readout Units

Builder Units

64x64 DAQ slice

P. Sphicas
Triggering
July 2006

SSI 2006
Challenges:

- Large N (on everything)
- Disparity in time scales (μs–s; from readout to filtering)
- Need to use standards for
 - Communication (Corba? Dead! “now”: SOAP!)
 - User Interface (is it the Web? Yes…)
- Physics monitoring complicated by factor 500 (number of sub-farms);
 - Need merging of information; identification of technical, one-time problems vs detector problems

Current work:

- Create toolkits from commercial software (SOAP, XML, HTTP etc); integrate into packages, build “Run Control” on top of it;

Detector Control System: DCS. All of this for the ~10^7 channels… SCADA (commercial, standard) solutions
High-Level Trigger
Physics selection at the LHC

LEVEL-1 Trigger
Hardwired processors (ASIC, FPGA)
Pipelined massive parallel

HIGH LEVEL Triggers
Farms of processors

Reconstruction & Analysis
Tier 0/1/2 Centers

25 ns 3 µs ms sec hour year

ON-line

OFF-line

P. Sphicas
Triggering

SSI 2006
July 2006
Branches

1. Throughput of ~32 Gb/s is enough (ALICE)
 - ALICE needs 2.5 GB/s of “final EVB”
 - Then proceed no further; software, control and monitor, and all issues of very large events (storage very important)

2. Need more bandwidth, but not much more (e.g. LHCb; event size ~100 kB @ 40 kHz = 4 GB/s = 32 Gb/s)
 - Implement additional capacity

3. Need much more than this; CMS+ATLAS need 100 GB/s = 800Gb/s
 - Two solutions:
 - Decrease rate by using a Level-2 farm (ATLAS)
 - Thus, two farms: a Level-2 and Level-3 farm
 - Build a system that can do 800 Gb/s (CMS)
 - Thus, a single farm
Level-2 (ATLAS):
- Region of Interest (ROI) data are ~1% of total
- Smaller switching network is needed (not in # of ports but in throughput)
- But adds:
 - Level-2 farm
 - “ROB” units (have to “build” the ROIs)
 - Lots of control and synchronization
- Problem of large network → problem of Level-2

Combined HLT (CMS):
- Needs very high throughput
- Needs large switching network
- But it is also:
 - Simpler (in data flow and in operations)
 - More flexible (the entire event is available to the HLT – not just a piece of it)
- Problem of selection → problem of technology
ATLAS: from demonstrator to full EVB

- **With Regions of Interest:**
 - If the Level-2 delivers a factor 100 rejection, then input to Level-3 is 1-2 kHz.
 - At an event size of 1-2 MB, this needs 1-4 GB/s
 - An ALICE-like case in terms of throughput
 - Dividing this into ~100 receivers implies 10-40 MB/s sustained – certainly doable
 - Elements needed: ROIBuilder, L2PU (processing unit),
3D-EVB: DAQ staging and scaling

DAQ unit (1/8th full system):
- Lv-1 max. trigger rate: 12.5 kHz
- RU Builder (64x64): 0.125 Tbit/s
- Event fragment size: 16 kB
- RU/BU systems: 64
- Event filter power: ≈ 0.5 TFlop

Data to surface:
- Average event size: 1 Mbyte
- No. FED s-link64 ports: > 512
- DAQ links (2.5 Gb/s): 512+512
- Event fragment size: 2 kB
- FED builders (8x8): ≈ 64+64
Event Filter (a processor farm)

- Explosion of number of farms installed
 - Very cost-effective
 - Linux is free but also very stable, production-quality
 - Interconnect: Ethernet, Myrinet (if more demanding I/O); both technologies inexpensive and performant
 - Large number of message-passing packages, various API’s on the market
 - Use of a standard (VIA?) could be the last remaining tool to be used on this front
 - Despite recent growth, it’s a mature process: basic elements (PC, Linux, Network) are all mature technologies. Problem solved. What’s left: Control & Monitor.
 - Lots of prototypes and ideas. Need real-life experience.
 ➔ Problem is human interaction
Strategy/design guidelines
- Use offline software as much as possible
 - Ease of maintenance, but also understanding of the detector

Boundary conditions:
- Code runs in a single processor, which analyzes one event at a time
- HLT (or Level-3) has access to full event data (full granularity and resolution)
- Only limitations:
 - CPU time
 - Output selection rate (~10^2 Hz)
 - Precision of calibration constants

Main requirements:
- Satisfy physics program (see later): high efficiency
- Selection must be inclusive (to discover the unpredicted as well)
- Must not require precise knowledge of calibration/run conditions
- Efficiency must be measurable from data alone
- All algorithms/processors must be monitored closely
HLT (regional) reconstruction (I)

Global
- process (e.g. DIGI to RHITs) each detector fully
 - then link detectors
 - then make physics objects

Regional
- process (e.g. DIGI to RHITs) each detector on a "need" basis
 - link detectors as one goes along
 - physics objects: same
For this to work:

- Need to know where to start reconstruction (seed)

For this to be useful:

- Slices must be narrow
- Slices must be few

Seeds from Lvl-1:

- e/γ triggers: ECAL
- μ triggers: μ sys
- Jet triggers: E/H-CAL

Seeds \approx absent:

- Other side of lepton
- Global tracking
- Global objects (Sum E_T, Missing E_T)
Example: electron selection (I)

- **“Level-2” electron:**
 - 1-tower margin around 4x4 area found by Lvl-1 trigger
 - Apply “clustering”
 - Accept clusters if H/EM < 0.05
 - Select highest E_T cluster

- **Brem recovery:**
 - Seed cluster with $E_T > E_T^{\text{min}}$
 - Road in ϕ around seed
 - Collect all clusters in road
 - “supercluster” and add all energy in road:

![Diagram of electron selection process]
Example: electron selection (II)

- "Level-2.5" selection: add pixel information
 - Very fast, high rejection (e.g. factor 14), high efficiency ($\varepsilon=95\%$)
 - Pre-bremsstrahlung
 - If # of potential hits is 3, then demanding ≥ 2 hits quite efficient

![Diagram of electron selection process](image)

1. Predict a track
2. Cluster position
3. Nominal vertex (0,0,0)
4. Cluster E
5. If a hit is found, estimate z vertex
6. Propagate to the pixel layers and look for compatible hits
7. Pixel hit
8. Predict a new track and propagate
9. Estimated vertex (0,0,z)

Graph:
- No staging: 3 cylinders + 2 disks
- Staged: 2 cylinders + 1 disk

Legend:
- No staging: 2×10^{33}/cm2/s
- Staged + Si strips
- Barrel
- Alt.

Additional Text:

- Pre-bremsstrahlung
- If # of potential hits is 3, then demanding ≥ 2 hits quite efficient

Notes:
- Very fast, high rejection (e.g. factor 14), high efficiency ($\varepsilon=95\%$)
Example: electron selection (III)

- “Level-3” selection
 - Full tracking, loose track-finding (to maintain high efficiency):
 - Cut on E/p everywhere, plus
 - Matching in η (barrel)
 - H/E (endcap)
 - Optional handle (used for photons): isolation

<table>
<thead>
<tr>
<th>Signal</th>
<th>Background</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single e</td>
<td>$W \rightarrow e\nu$: 10 Hz</td>
<td>33 Hz</td>
</tr>
<tr>
<td></td>
<td>π^+/π^0 overlap: 5 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>π^0 conversions: 10 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b/c \rightarrow e$: 8 Hz</td>
<td></td>
</tr>
<tr>
<td>Double e</td>
<td>$Z \rightarrow ee$: 1 Hz</td>
<td>~0</td>
</tr>
<tr>
<td>Single γ</td>
<td>2 Hz</td>
<td>5 Hz</td>
</tr>
<tr>
<td>Double γ</td>
<td>~0</td>
<td>5 Hz</td>
</tr>
</tbody>
</table>

Electrons p_T, 10-50 GeV
Barrel

Weighted jet bkg
30% overflow
Online Physics Selection: summary

- Level-1 max trigger rate: 100 kHz
- Average event size: 1 Mbyte
- Builder network: 1 Tb/s
- Online computing power: \(\approx 5 \times 10^6 \) MIPS
- Event flow control: \(\approx 10^6 \) Mssg/s
- No. Readout systems: \(\approx 512 \)
- No. Filter systems: \(\approx 512 \times n \)
- System dead time: \(\approx \% \)

What we covered
After the Trigger and the DAQ/HLT

Networks, farms and data flows

- Raw Data: 1000 Gbit/s
- Events: 10 Gbit/s
- Controls: 1 Gbit/s
- 5 TeraIPS
- 10 TeraIPS
- To regional centers: 622 Mbit/s
- Remote control rooms

P. Sphicas
Triggering

SSI 2006
July 2006
(Grand) Summary

- The Level-1 trigger takes the LHC experiments from the 25 ns timescale to the 10-25 μs timescale
 - Custom hardware, huge fanin/out problem, fast algorithms on coarse-grained, low-resolution data

- Depending on the experiment, the next filter is carried out in one or two (or three) steps
 - Commercial hardware, large networks, Gb/s links.
 - If Level-2 present: low throughput needed (but need Level-2)
 - If no Level-2: three-dimensional composite system

- High-Level trigger: to run software/algorithms that are as close to the offline world as possible
 - Solution is straightforward: large processor farm of PCs
 - Monitoring this is a different issue

- All of this must be understood, for it’s done online.
With respect to offline analysis:

Same hardware (Filter Subfarms)

Same software ()

But different situations