

Triggering (at the LHC)

Paris Sphicas CERN/PH and Univ. of Athens SLAC Summer Institute 2006 July 2006

- Introduction
 - LHC: The machine and the physics
 - Trigger/DAQ architectures and tradeoffs
- Level-1 Trigger
 - Architectures, elements, performance
- DAQ
 - Readout, Event-Building, Control & monitor
- High-Level trigger
 - Farms, algorithms

LHC: physics goals and machine parameters

Collisions at the LHC: summary

Proton - Proton	2804 bunch/beam
Protons/bunch	10 ¹¹
Beam energy	7 TeV (7x10 ¹² eV)
Luminosity	10 ³⁴ cm ⁻² s ⁻¹

Crossing rate

40 MHz

Collision rate ≈ 10⁷-10⁹

New physics rate ≈ .00001 Hz

Event selection: 1 in 10,000,000,000,000

- Primary physics goal: explore the physics of Electroweak symmetry breaking.
 - In the SM: the Higgs
 - Energy of the collider: dictated by machine radius and magnets
 - Luminosity: determine from requirements

- LHC will have ~3600 bunches
 - And same length as LEP (27 km)
 - Distance between bunches: 27km/3600=7.5m
 - Distance between bunches in time: 7.5m/c=25ns

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^7 mb⁻¹Hz \hat{E}_{E}^{2} ^{10²}

 - Interaction Rate, R = 7x10⁸ Hz
 - Events/beam crossing:
 - ∆t = 25 ns = 2.5x10⁻⁸ s
 - Interactions/crossing=17.5
 - Not all p bunches are full
 - 2835 out of 3564 only
 - Interactions/"active" crossing = 17.5 x 3564/2835 = 23

Operating conditions (summary):
1) A "good" event containing a Higgs decay +
2) ≈ 20 extra "bad" (minimum bias) interactions

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

20 min bias events overlap H→ZZ $\mathbf{Z} \rightarrow \mu \mu$ $H \rightarrow 4$ muons: the cleanest ("golden") signature

- LHC detectors must have fast response
 - Avoid integrating over many bunch crossings ("pile-up")
 - Typical response time : 20-50 ns
 - \rightarrow integrate over 1-2 bunch crossings \rightarrow pile-up of 25-50 minbias events \rightarrow very challenging readout electronics
- LHC detectors must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H $\rightarrow \gamma\gamma$ decays)

 \rightarrow large number of electronic channels

- LHC detectors must be radiation resistant:
 - high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters:
 - up to 10¹⁷ n/cm² in 10 years of LHC operation
 - up to 10⁷ Gy (1 Gy = unit of absorbed energy = 1 Joule/Kg)

Pile-up

In-time" pile-up: particles from the same crossing but from a different pp interaction

- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings

In-time

pul se

 Need "bunch-crossing identification"

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t (25ns units)

oulse shape

super-

impose

Time of Flight

c=30cm/ns; in 25ns, s=7.5m

Muon Detectors Electromagnetic Calorimeters Forward Calorimeters Solenoid End Cap Toroid $\rightarrow -$ **Barrel** Toroid Inner Detector Shielding Hadronic Calorimeters

Selectivity: the physics

- Cross sections of physics processes vary over many orders of magnitude
 - Inelastic: 10⁹ Hz
 - W $\rightarrow \ell \nu$: 10² Hz
 - t t production: 10 Hz
 - Higgs (100 GeV/c²): 0.1 Hz
 - ♦ Higgs (600 GeV/c²): 10⁻² Hz
- QCD background
 - ◆ Jet E_T ~250 GeV: rate = 1 kHz
 - → electron bkg
 - Decays of K, π , b \rightarrow muon bkg
- Selection needed: 1:10¹⁰⁻¹¹
 - Before branching fractions...

Trigger/DAQ requirements/challenges

- N (channels) ~ O(10⁷); ≈20 interactions every 25 ns
 - need huge number of connections
 - need information super-highway
- Calorimeter information should correspond to tracker info
 - need to synchronize detector elements to (better than) 25 ns
- In some cases: detector signal/time of flight > 25 ns
 - integrate more than one bunch crossing's worth of information
 - need to identify bunch crossing...
- Can store data at $\approx 10^2$ Hz
 - need to reject most interactions
- It's On-Line (cannot go back and recover events)
 - need to monitor selection

CERN

Trigger/DAQ: architectures

Online Selection Flow in pp

• Level-1 trigger: reduce 40 MHz to 10⁵ Hz

- This step is always there
- Upstream: still need to get to 10² Hz; in 1 or 2 extra steps

Three physical entities

Additional processing in LV-2: reduce network bandwidth requirements

Two physical entities

- Reduce number of building blocks
- Rely on commercial components (especially processing and communications)

Comparison of 2 vs 3 physical levels

Trigger/DAQ parameters: summary

ATLAS	No.Levels Trigger	Level-1 Rate (Hz)	Event Size (Byte)	Readout Bandw.(GB/s)	Filter Out MB/s (Event/s)
CMS	3	10 ⁵ -2 10 ³	10 ⁶	10	100 (10 ²)
	2	10 ⁵	10 ⁶	100	100 (10 ²)
LHCb	3 LV- LV-	₀ 10 ⁶ ₁ 4 10 ⁴	2x10⁵	4	40 (2x10 ²)
	4 Pp-I p-p	^{⊳⊳} 500 10 ³	5x10 ⁷ 2x10 ⁶	5	1250 (10 ²) 200 (10 ²)
P. Sphicas Triggering		SSI 2006 July 2006			19

Level-1 Trigger

Triggering

Level-1 trigger algorithms

Physics facts:

- pp collisions produce mainly hadrons with P_T~1 GeV
- Interesting physics (old and new) has particles (leptons and hadrons) with large transverse momenta:
 - W→ev: M(W)=80 GeV/c²; P_T(e) ~ 30-40 GeV
 - H(120 GeV)→γγ: P_T(γ) ~ 50-60 GeV
- Basic requirements:
 - Impose high thresholds on particles
 - Implies distinguishing particle types; possible for electrons, muons and "jets"; beyond that, need complex algorithms
 - Typical thresholds:
 - Single muon with P_T>20 GeV (rate ~ 10 kHz)
 - \rightarrow Dimuons with P_T>6 (rate ~ 1 kHz)
 - Single e/ γ with P_T>30 GeV (rate ~ 10-20 kHz)
 - → Dielectrons with P_T >20 GeV (rate ~ 5 kHz)
 - Single jet with P_T >300 GeV (rate ~ 0.2-0.4 kHz)

Particle signatures in the detector(s)

 Pattern recognition much faster/easier

- Simple algorithms
- Small amounts of data
- Local decisions

 Complex algorithms
 Huge amounts of data

Need to link sub-detectors

Level-1 Trigger: decision loop

- Synchronous 40 MHz digital system
 - Typical: 160 MHz internal pipeline
 - Latencies:
 - Readout + processing: <
 1μs
 - Signal collection & distribution: ≈ 2µs
- At LvI-1: process only calo+μ info

Signaling and pipelining

Detector Readout: front-end types

Clock distribution & synchronization

Trigger, Timing & Control (TTC); from RD12

CERN

Lvl-1 trigger architecture: ATLAS

LvI-1 trigger data flow: ATLAS

- On-detector:
 - analog sums to form trigger towers
- Off-detector:
 - Receive data, digitize, identify bunch crossing, compute E_T
 - Send data to Cluster Processor and Jet Energy Processor crates
- Local processor crates:
 - Form sums/comparisons as per algorithm, decide on objects found
- Global Trigger: decision

Level-1 Calorimeter Trigger Architecture

Lvl-1 Calo e/γ trigger: performance

Efficiencies and Trigger Rates

SSI 2006 July 2006

LvI-1 jet and τ triggers

Issues are jet energy resolution and tau identification

- Single, double, triple and quad thresholds possible
- Possible also to cut on jet multiplicities
- Also ETmiss, SET and SET(jets) triggers

LvI-1 muon trigger

- The goal: measure momentum online
 - Steeply falling spectrum; resolution costs!
- The issue: speed
 - ATLAS: dedicated muon chambers (RPC and TGC)
 - CMS: RPC added to DT and CSC (which provide standalone trigger)

LvI-1 muon trigger (CMS)

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Hit strips of 6 layers form a vector.

Comparators give 1/2-strip resol.

CSC

Hardware implementation: ASICs for Trigger Primitive Generators FPGAs for Track Finder processors

- Extrapolation: using look-up tables
- Track Assembler: link track segmentpairs to tracks, cancel fakes
- Assignment: P_T (5 bits), charge, η (6 bits), ϕ (8 bits), quality (3 bits)

Lvl-1 muon trigger (CMS)

Pattern of strips hit: Compared to predefined patterns corresponding to various p_T

Global muon trigger (CMS)

- Combine results from RPC, CSC and DT triggers
- Match muon candidates from different trigger systems; use complementarity of detectors
- improve efficiency and rate
- assign muon isolation
- deliver the 4 best (highest P_T, highest-quality) muons to Global Trigger
- Pt resolution:
 - 18% barrel
 - 35% endcaps
- Efficiency: ~ 97%

Technologies in Level-1 systems

- ASICs (Application-Specific Integrated Circuits) used in some cases
 - Highest-performance option, better radiation tolerance and lower power consumption (a plus for on-detector electronics)
- FPGAs (Field-Programmable Gate Arrays) used throughout all systems
 - Impressive evolution with time. Large gate counts and operating at 40 MHz (and beyond)
 - Biggest advantage: flexibility
 - Can modify algorithms (and their parameters) in situ
- Communication technologies
 - High-speed serial links (copper or fiber)
 - LVDS up to 10 m and 400 Mb/s; HP G-link, Vitesse for longer distances and Gb/s transmission
 - Backplanes
 - Very large number of connections, multiplexing data
 - → operating at ~160 Mb/s

Lvl-1 Calo Trigger: prototypes

Receiver Card

Trigger Crate (160 MHz backplane)

Back

Front

Links

P. Sphicas Triggering SSI 2006 July 2006

Bunch-crossing identification

- Need to extract quantities of the bunch-crossing in question (and identify the xing)
- FIR (finite impulse response filter)
 - Feed LUT to get E_T
 - Feeds peak-finder to identify bunch-xing
 - Special handling of very large pulses (most interesting physics...)
- Can be done in an ASIC (e.g. ATLAS)

- A very large OR-AND network that allows for the specification of complex conditions:
 - 1 electron with P_T>20 GeV OR 2 electrons with P_T>14 GeV OR 1 electron with P_T>16 and one jet with P_T>40 GeV...
 - The top-level logic requirements (e.g. 2 electrons) constitute the "trigger-table" of the experiment
 - Allocating this rate is a complex process that involves the optimization of physics efficiencies vs backgrounds, rates and machine conditions

→ More on this in the HLT part

- Some challenges of unprecedented scale
 - Interaction rate and selectivity
 - Number of channels and synchronization
 - Pile-up and bunch-crossing identification
 - Deciding on the fate of an event given ~3 μ s
 - Of which most is spent in transportation
- Trigger levels: the set of successive approximations (at the ultimate save-or-kill decision)
 - Number of physical levels varies with architecture/experiment
- Level-1 is always there, reduces 40 MHz to 40-100 kHz
 - Level-0 may be used to (a) reduce initial rate to ~ 1MHz allow for slightly more complex processing (e.g. simple tracking)

DAQ system

Triggering

Online Selection Flow in pp

Need standard interface to front-ends

Large number of independent modules

Event Building

 Form full-event-data buffers from fragments in the readout. Must interconnect data sources/destinations.

Barrel-shifting with variable-size events

Demonstrator

JERI

- Fixed-block-size with barrel-shifter
- Basic idea taken from ATM (and timedivision-muxing)
- As seen in composite-switch analysis, this should work for large N as well
- Currently testing on 64x64... (originally: used simulation for N≈500; now ~obsolete)

Detector readout & 3D-EVB

Control & Monitor

Challenges:

- Large N (on everything)
- Disparity in time scales (µs–s; from readout to filtering)
- Need to use standards for
 - Communication (Corba? Dead! "now": SOAP!)
 - User Interface (is it the Web? Yes...)
- Physics monitoring complicated by factor 500 (number of subfarms);
 - Need merging of information; identification of technical, one-time problems vs detector problems

Current work:

- Create toolkits from commercial software (SOAP, XML, HTTP etc); integrate into packages, build "Run Control" on top of it;
- Detector Control System: DCS. All of this for the ~10⁷ channels... SCADA (commercial, standard) solutions

High-Level Trigger

Branches

- 1. Throughput of ~32 Gb/s is enough (ALICE)
 - ALICE needs 2.5 GB/s of "final EVB"
 - Then proceed no further; software, control and monitor, and all issues of very large events (storage very important)
- 2. Need more bandwidth, but not much more (e.g. LHCb; event size ~100 kB @ 40 kHz = 4 GB/s = 32 Gb/s)
 - Implement additional capacity
- 3. Need much more than this; CMS+ATLAS need 100 GB/s = 800Gb/s
 - Two solutions:
 - Decrease rate by using a Level-2 farm (ATLAS)
 - → Thus, two farms: a Level-2 and Level-3 farm
 - Build a system that can do 800 Gb/s (CMS)
 - → Thus, a single farm

100 GB/s case: Level-2/Level-3 vs HLT

Level-2 (ATLAS):

- Region of Interest (ROI) data are ~1% of total
- Smaller switching network is needed (not in # of ports but in throughput)
- But adds:
 - Level-2 farm
 - "ROB" units (have to "build" the ROIs)
 - Lots of control and synchronization
- ◆ Problem of large network
 → problem of Level-2

- Combined HLT (CMS):
 - Needs very high throughput
 - Needs large switching network
 - But it is also:
 - Simpler (in data flow and in operations)
 - More flexible (the entire event is available to the HLT – not just a piece of it)
 - ◆ Problem of selection → problem of technology

ATLAS: from demonstrator to full EVB

- With Regions of Interest:
 - If the Level-2 delivers a factor 100 rejection, then input to Level-3 is 1-2 kHz.
 - At an event size of 1-2 MB, this needs 1-4 GB/s
 - An ALICE-like case in terms of throughput
 - Dividing this into ~100 receivers implies 10-40 MB/s sustained – certainly doable
 - Elements needed: ROIBuilder, L2PU (processing unit),

Regions of Interest (Rol)

CERM

- Explosion of number of farms installed
 - Very cost-effective
 - Linux is free but also very stable, production-quality
 - Interconnect: Ethernet, Myrinet (if more demanding I/O); both technologies inexpensive and performant
 - Large number of message-passing packages, various API's on the market
 - Use of a standard (VIA?) could be the last remaining tool to be used on this front
 - Despite recent growth, it's a mature process: basic elements (PC, Linux, Network) are all mature technologies. Problem solved. What's left: Control & Monitor.
 - Lots of prototypes and ideas. Need real-life experience.
 - → Problem is human interaction

HLT requirements and operation

- Strategy/design guidelines
 - Use offline software as much as possible
 - Ease of maintenance, but also understanding of the detector
- Boundary conditions:
 - Code runs in a single processor, which analyzes one event at a time
 - HLT (or Level-3) has access to full event data (full granularity and resolution)
 - Only limitations:
 - CPU time
 - Output selection rate (~10² Hz)
 - Precision of calibration constants
- Main requirements:
 - Satisfy physics program (see later): high efficiency
 - Selection must be inclusive (to discover the unpredicted as well)
 - Must not require precise knowledge of calibration/run conditions
 - Efficiency must be measurable from data alone
 - All algorithms/processors must be monitored closely

HLT (regional) reconstruction (II)

- For this to work:
 - Need to know where to start reconstruction (seed)
- For this to be useful:
 - Slices must be narrow
 - Slices must be few
- Seeds from LvI-1:
 - e/γ triggers: ECAL
 - μ triggers: μ sys
 - ♦ Jet triggers: E/H-CAL

- Seeds ≈ absent:
 - Other side of lepton
 - Global tracking
 - Global objects (Sum E_T, Missing E_T)

Example: electron selection (I)

- "Level-2" electron:
 - 1-tower margin around 4x4 area found by LvI-1 trigger
 - Apply "clustering"
 - Accept clusters if H/EM < 0.05
 - Select highest E_T cluster

- Brem recovery:
 - Seed cluster with $E_T > E_T^{min}$

 - Collect all clusters in road
 - \rightarrow "supercluster"
 - and add all energy in road:

Example: electron selection (II)

- "Level-2.5" selection: add pixel information
 - Very fast, high rejection (e.g. factor 14), high efficiency (ε=95%)
 - Pre-bremsstrahlung
 - If # of potential hits is 3, then demanding ≥ 2 hits quite efficient

ER

Example: electron selection (III)

- "Level-3" selection
 - Full tracking, loose trackfinding (to maintain high efficiency):
 - Cut on E/p everywhere, plus
 - Matching in η (barrel)
 - H/E (endcap)
 - Optional handle (used for photons): isolation

	Signal	Background	Total
Single e	$\mathbf{W} ightarrow \mathbf{e} v$: 10 Hz	π^{\pm}/π^{0} overlap: 5 Hz π^{0} conversions: 10 Hz b/c \rightarrow e: 8 Hz	33 Hz
Double e	$Z \rightarrow ee: 1 Hz$	~0	1 Hz
Single γ	2 Hz	3 Hz	5 Hz
Double γ	~0	5 Hz	5 Hz
			44 Hz

ERN

Online Physics Selection: summary

CÈRN

After the Trigger and the DAQ/HLT

- The Level-1 trigger takes the LHC experiments from the 25 ns timescale to the 10-25 μs timescale
 - Custom hardware, huge fanin/out problem, fast algorithms on coarse-grained, low-resolution data
- Depending on the experiment, the next filter is carried out in one or two (or three) steps
 - Commercial hardware, large networks, Gb/s links.
 - If Level-2 present: low throughput needed (but need Level-2)
 - If no Level-2: three-dimensional composite system
- High-Level trigger: to run software/algorithms that are as close to the offline world as possible
 - Solution is straightforward: large processor farm of PCs
 - Monitoring this is a different issue
- All of this must be understood, for it's done online.

P. Sphicas Triggering