MiniBooNE

H. Ray
 Los Alamos National Laboratory
 MiniBooNE

MiniBooNE Today

- MiniBooNE is performing a blind analysis (closed box)
- Some of the info in all of the data
- All of the info in some of the data
- All of the infors of the data
- We haven't yet opened the box

Outline

- Oscillation Review
- MiniBooNE
-How we get our neutrinos
-How we detect neut
-What's needed for ti analysis
-Where we are now

Neutrino Oscillations

Weak state

$$
\binom{v_{e}}{v_{\mu}}=\binom{\cos \theta \sin \theta}{-\sin \theta \cos \theta}\binom{v_{1}}{v_{2}}
$$

Neutrino Oscillations

> Weak state $$
\binom{v_{e}}{v_{\mu}}=\left(\begin{array}{c}\cos \theta \sin \theta \\ -\sin \theta \\ \cos \theta\end{array}\right)\binom{v_{1}}{v_{2}}
$$ $\left.\left|v_{\mu}(0)>=-\sin \theta\right| v_{1}\right\rangle+\cos \theta\left|v_{2}\right\rangle$

Neutrino Oscillations

$$
\begin{aligned}
& \text { Weak state } \\
& \binom{v_{e}}{v_{\mu}}=\binom{\cos \theta \sin \theta}{-\sin \theta \cos \theta}\binom{v_{1}}{v_{2}} \\
& \left.\left|v_{\mu}(t)>=-\sin \theta\right| v_{1}>+\cos \theta| |_{2}\right\rangle \\
& e_{-i E 1 t}^{-i E 2 t}
\end{aligned}
$$

Neutrino Oscillations

$$
P_{o s c}=\left|\left\langle v_{e} \mid v_{\mu}(t)\right\rangle\right|^{2}
$$

Neutrino Oscillations

$\Delta \mathrm{m}^{2}$ is the mass squared difference between the two neutrino states

Distance from point of creation of neutrino beam to detection point

Neutrino Oscillations

Distance from neutrino source (L)

Current Oscillation Status

Confirming LSND

Fit to oscillation hypothesis

- Want different systematics
- Want different signal signature and backgrounds

- Oscillation Review

- MiniBooNE
- How we get our neutrinos
- How we detect neutrinos
- What's needed for the oscillation analysis
- Where we are now

MiniBooNE Neutrino Beam

Fermilab
Booster

- Start with an 8 GeV beam of protons from the booster

MiniBooNE Neutrino Beam

Fermilab
Booster

- The proton beam enters the magnetic horn where it interacts with a Beryllium target
- Focusing horn allows us to run in neutrino, antineutrino mode
- Collected $\sim 6 \times 10^{20}$ POT, $\sim 600,000 v$ events
- Running in anti- v mode now, collected $\sim 0.4 \times 10^{20}$ POT

MiniBooNE Neutrino Beam

Fermilab
Booster

- $\mathrm{p}+\mathrm{Be}=$ stream of mesons (π, K)
- Mesons decay into the neutrino beam seen by the detector

$$
\begin{aligned}
& -\mathrm{K}^{+} / \pi^{+} \rightarrow \mu^{+}+v_{\mu} \\
& \quad \cdot \mu^{+} \rightarrow \mathrm{e}^{+}+v_{\mu}+\overline{v_{\mathrm{e}}}
\end{aligned}
$$

MiniBooNE Neutrino Beam

- An absorber is in place to stop muons and undecayed mesons
- Neutrino beam travels through 450 m of dirt

MiniBooNE Detector

Detector

- 12.2 meter diameter sphere
- Pure mineral oil
- 2 regions
- Inner light-tight region, 1280 PMTs (10\% coverage)
- Optically isolated outer veto-region, 240 PMTs

Outline

- Oscillation Review
- MiniBooNE
- How we get our neutrinos
- How we detect neutri
- What's needed for the analysis
- Where we are now

Detecting Neutrinos

- Neutrinos interact with material in the detector. It's the outcome of these interactions that we look for
- Neutrinos can interact with :
- Electron in the atomic orbit
- The nucleus as a whole
- Free proton or nucleon bound in nucleus
- A quark

Neutrino Interactions

Elastic Scattering
Quasi-Elastic Scattering

- Single Pion Production
- Deep Inelastic Scattering

MeV

Elastic Scattering

\longrightarrow arget left intact

- Neutrinos can elastic scatter from any particle (electrons, protons)
- Neutrino imparts recoil energy

Quasi-elastic Scattering

- Neutrino in, charged lepton out
- Target changes type
- Need to conserve electric charge at every vertex
- Need minimum neutrino E
- Need enough CM energy to make the two outgoing particles

Single Pion Production

- Resonant
- neutrino scattering from a nucleon
- Nucleon resonance is excited, decays back into it's ground state nucleon
- Emits one or more mesons in the de-excitation process

Single Pion Production

- Coherent
- neutrino scatters from entire nucleus
- nucleus does not break up / no recoil nucleon
- Requires low momentum transfer (to keep nucleus intact)
- No transfer of charge, quantum numbers

Deep Inelastic Scattering

- Scattering with very large momentum transfers
- Incoming neutrino produces a W boson, turns into partner lepton
- W interacts with quark in nucleon and blows it to bits (ie inelastic)
- Quarks shower into a variety of hadrons, dissipating the E carried by the W boson (ie deep)

Observing Neutrino Interactions

- Find products of neutrino interactions
- Passage of charged particles through matter leaves a distinct mark - Cerenkov effect / light - Scintillation light

Cerenkov Light

- Charged particles with a velocity greater than the speed of light * in the medium* produce an E-M shock wavere
- v>1/n
- Similar to a sonic boom
- Light detected by PMTTS
- Use to measure particle direction and to reconstruct interaction vertex
- Prompt light signature

Scintillation Light

- Charged particles moving through a material deposit energy in the medium, which excites the surrounding molecules
- The de-excitation of molecules produces scintillation light
- Isotropic, delayed
- No information about track direction
- Can use PMT timing information to locate interaction point

Event Signature

Cerenkov Light...

From side
muons:
long track, slows down
short track, no multiple scattering
electrons: short track, mult. scat., brems.

neutral pions: 2 electron-like tracks

Ring with
Fuzzy
Inner
Region

Sharp Outer

- Oscillation Review

- MiniBooNE
- How we get our neutrinos
- How we detect neutrings
- What's needed for th analysis
- Where we are now

Analysis Components

- We are performing a blind analysis
- The oscillation signal is expected to be small
- Probability for LSND oscillations $=\sim 0.26 \%$!
- Requires very precise knowledge of
- Event rate / neutrino flux
- Detector response
- Backgrounds to the oscillation search
- Requires well developed Particle ID algorithm

Event Rate / Neutrino Flux

World P+Be Measurements

Event Rates \& Flux Predictions

Double differential π^{+}production cross sections from the Be 5\% target

Momentum and Angular distribution of pions decaying to a neutrino that passes through the MB detector.

- E910
- π, K production @ 6, $12,18 \mathrm{GeV}$ w/thin Be target
- HARP
- π, K production @ 8 GeV w/ 5, 50, 100\% λ thick Be target
- Thin target results just added! (Apr 06)

Detector Response

External Measurements

emitted scintillation light

- Variety of standalone tests which characterize separate components of mineral oil

Extinction Rate for MiniBooNE Marcol 7 Mineral Oil

Internal Calibration Sources

- Muon tracker + cubes : provides μ and Michel e- of known position and direction in tank, key to understanding E and reconstruction
- Laser flasks (4) : used to measure tube charge, timing response
- Neutral Current Elastic sample : provides neutrino sample, protons below Cerenkov threshold == isolate scintillation components, distinguish from fluorescence of detector

The Optical Model Chain

External Measurements and Laser Calibration

First Calibration with Michel Data

Calibration of Scintillation Light with NC Events

Final Calibration with Michel Data

Recent Improvements

Improvements to OM greatly improve Michel electron E as a function of location in our detector

Backgrounds

Backgrounds

- Backgrounds are determined from our own data using
$-v_{\mu}$ CCQE events for intrinsic v_{e} from μ^{+}
-Single π^{0} events for π^{0} mis-ID
- High energy v_{e} events for intrinsic v_{e} from K^{+}

Backgrounds

Osc v_{e}

- Example oscillation signal
- $\Delta \mathrm{m}^{2}=1 \mathrm{eV}^{2}$
$-\sin ^{2} 2 \theta=0.004$
- Fit for excess as a function of
reconstructed V_{e} energy

Mis-ID Backgrounds

Mis-ID ν_{μ}

- $-83 \% \pi^{0}$
- Determined by clean π^{0} measurement
- $\sim 7 \% \Delta$ decay
- -10% other
- Use v_{μ} CCQE rate to normalize and MC for shape

Mis-ID Backgrounds

- Need sample of pure π^{0} to measure rate as f(momentum)
- High-P region very important to get a handle on high-E v_{e} background from K^{+}

Intrinsic v_{e} Backgrounds

v_{e} from μ^{+} $p+B e \longrightarrow \pi^{+}<_{\mu^{+}}^{v_{\mu}}$

- Measured with ν_{μ} CCQE sample
- Same parent π^{+}kinematics
- Most important background
- Very highly constrained (a few percent)

Intrinsic v_{e} Backgrounds

Particle ID

Sensitivity Estimate

- Good sensitivity requires PID
- Remove $\approx 99.9 \%$ of v_{μ} CC interactions
- Remove $\approx 99 \%$ of all NC π^{0} producing interactions
- Maintain $\approx 30-60 \%$ efficiency for v_{e} interactions

NuMI and MiniBooNE

Checking PID with NuMI Events

- Because of the off-axis angle, the beam at MiniBooNE from NuMI is significantly enhanced in v_{e} from K^{+}
- Enables a powerful check on the Particle ID

$1000 \mathrm{MeV} \leq$ Energy $<1500 \mathrm{MeV}$

MiniBooNE Summary

- Checking and double-checking our systematic errors

Anti-neutrino Data

- We have several summer students working with the anti-neutrino data
$-\overline{v_{\mu}}$ CCQE free-proton cross section
- NC pion analysis

Quasi-Elastic Energy Distribution for Muon Anti-Neutrinos

Backup Slides

Sampling Neutrino Theories

AKA : explaining the three oscillation results

Explaining LSND

- Sterile Neutrinos

- RH neutrinos that don't interact (Weak == LH only)
- CPT Violation
- 3 neutrino model, $\Delta \mathrm{m}_{\text {anti-v }}{ }^{2}>\Delta \mathrm{m}_{v}{ }^{2}$
- Run in neutrino, anti-neutrino mode, compare measured oscillation probability
- Mass Varying Neutrinos
- Mass of neutrinos depends on medium through which it travels
- Lorentz Violation
- Oscillations depend on direction of propagation
- Oscillations explained by small Lorentz violation
- Don't need to introduce neutrino mass for oscillations!
- Look for sidereal variations in oscillation probability

How often do these interactions occur?

Cross Sections

- Cross section = probability that an interaction will take place

Volume of detector $=\mathrm{V}\left(\mathrm{m}^{3}\right)$
Density of nucleons $=\mathrm{n}\left(1 / \mathrm{m}^{3}\right)$
Neutrino flux $=\phi\left(1 / \mathrm{m}^{2} \mathrm{~s}\right)$

$\xrightarrow{\mathrm{V}}$
Cross Section $\sigma\left(\mathrm{m}^{2}\right)=\#$ neutrino interactions per second Flux * Density * Volume

Neutrino Cross Sections

Neutrino has to produce a charged lepton $=$ need enough E to produce this extra mass

Impact of Improved OM

New!

Distance between pi0 vertex and 1st gamma conversion point

Scintillation light in 1st gammá in pi0 fitter

Particle ID Algorithm

- Using a boosted decision tree
- Similar to a neural net, but better
- Needs to be trained on a set of variables
- Want vars which are powerful at distinguishing between signal, background event types
- Have a large list of potential inputs
- Require data \& MC shapes to agree for an input to be considered for training
- The more vars with agreement, the larger set of powerful vars we'll have to draw from, thus providing a more powerful PID algo

PID Inputs

Chisq / NDF : 318 PID Inputs

MICHEL

$\begin{array}{lllllllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20\end{array}$

Chisq / NDF : 318 PID Inputs

