SLAC Summer Institute, July 25, 2006

Searching for New Physics: Results from Belle and Babar

Kay Kinoshita University of Cincinnati Belle Collaboration

- New particles (mainly) energy frontier brute force
- Deviations from the Standard Model:
 - where possible New Physics effect > (exp & th) precision of SM
 - precise and finite SM value
 - highly suppressed/forbidden in SM
- •At the B factory
 - -B decays
 - •CKM magnitudes, angles of Unitarity Triangle
 - •Rates & CP asymmetries in rare decays
 - -Charm decays
 - •Large suppressions in SM: mixing, flavor-changing-neutralcurrent (FCNC), CP asymmetry
 - -Tau leptons
 - Lepton flavor/number, baryon number

The Old Physics

Flavor & CKM

Cabibbo-Kobayashi-Maskawa (CKM) matrix

_{weak<->mass} eigenstates $\begin{array}{ccc} d' & s' & b' \\ \hline to make & u & 1 & 0 & 0 \\ W-couplings & g_F \times & c & 0 & 1 & 0 \\ generation-conserving & & t & 0 & 0 & 1 \end{array}$ s b $\begin{array}{c|c} & & & & & & \\ \hline & & & & \\ &$ Unitarity conditions $V_{ii}^*V_{ik}=\delta_{ik}$ -> 4 free parameters explicit parametrization(Wolfenstein):

$$\begin{array}{cccc} 1 - \lambda^{2}/2 & \lambda & \lambda^{3}A(\rho - i\eta) \\ -\lambda & 1 - \lambda^{2}/2 & \lambda^{2}A \\ \lambda^{3}A(1 - \rho - i\eta) - \lambda^{2}A & 1 \end{array} \xrightarrow{\text{irreducibly}}_{complex!} \xrightarrow{->} CP \text{ violation}$$

Unitarity Triangle

Complex coupling constant is CP-violating

$$CP\{_{f g} \ f'\} = \overline{f'} g \overline{f} \neq \overline{f'} g^{\star} \overline{f} = \{_{f g} \ f'\}^{\mathsf{T}}$$

BUT to <u>observe</u> CP asym, need 2+ interfering amplitudes {T,P}: T=gA,P=g'A' -> |gA+g'A'| <u>CP</u>]gA*+g'A'*|

Equal only if <u>relative phase</u> of g,g'=0

AND for irreducibly complex weak coupling in CKM, need process w. all 3 generations

CP asymmetry in B decay: example

B -> J/ψ K_s(Sanda/Bigi/Carter)

mixing+tree ($\propto V_{td}^{*2}$)

Bottom line: CP-dependent oscillation in time from x-term(s) - no theoretical uncertainty: $arg(V_{td}^2) = 2\phi_1$

$$\frac{dN}{dt}(B \to f_{CP}) = \frac{1}{2}\Gamma e^{-\Gamma\Delta t}(1 + \eta_b \eta_{CP} \sin 2\phi_1 \sin(\Delta m \Delta t));$$

$$\eta_b = \begin{pmatrix} +1 \text{ if } B_{t=0} = B^0\\ -1 \text{ if } B_{t=0} = \bar{B}^0 \end{pmatrix} \quad \eta_{CP} = \begin{pmatrix} -1 \text{ if } CP \text{ odd}\\ +1 \text{ if } CP \text{ even} \end{pmatrix}$$

the B-factory experiments

- Luminosity & events, Belle + Babar combined
 - ∫Ldt ~ 1100 fb⁻¹ (~90% Y(4S), ~10% off-resonance)
 - ~ 1.2 billion $B\overline{B}$ events
 - ~ 1.3 billion $c\overline{c}$ events
 - ~ 1.1 billion tau pairs
 - at Y(55){10.869 GeV} 1.86 fb⁻¹ (Belle)
 - 9 x 10⁴ $B_s \overline{B}_s$ events

B factory: $e^+e^- \to \Upsilon(4S) \to B\bar{B}$

KEKB & Belle

PEP-II & Babar

11 nations, 80 institutes, 623 persons

time-dependent CP analysis: overview

time-dependent CP analysis: overview

K. Kinoshita

Measurements with sensitivity to New Physics (many to be updated in a few days)

- CP asymmetry in b->sss, sqq
- b->sl+l-: Wilson coefficients
- b->dy/b->sy
- CP, CPT asymmetry in dilepton events
 - (Belle) hep-ex/0505017 (Babar) hep-ex/0603053
- В-> тv
- B_d, B_s -> γγ
- Charm mixing, flavor-changing neutral currents
- Tau lepton flavor/number, baryon number violation

CP asymmetry in B->ss \overline{s} : sin2 φ_1 in SM

 Additional diagrams compared to pure sss, possible tree contributions -> not as theoretically tidy

18

19

Only 1 update since Winter 2006 (more in a few days): http://www.slac.stanford.edu/xorg/hfag/triangle/moriond2006/index.shtml#qqs

Naïve World Average $sin2\varphi_1(b->sq\bar{q})=0.50\pm0.06$

Compare to $c\overline{c}s$: sin2 $\varphi_1(b \rightarrow c\overline{c}s)$ = 0.685 ± 0.032

- $CL = 9.2 \times 10^{-3} (2.6\sigma)$
- statistics?
- experimental systematics?
- theory corrections?
- new physics?

B->sq \overline{q} : K⁻ ρ^0

- hep-ex/0512066, to appear in PRL
- First observation of direct CP violation in charged B

20

Kinoshita

ž

SSI July 2006

$B \rightarrow s\ell^+\ell^-$

- $\{|C_7^{eff}| \text{ from } B(B \rightarrow X_s \gamma), \text{ constraints from } B(B \rightarrow K^{(*)}|+|-)\}$
- Different distributions in
 - q^2
 - θ = "helicity angle" -> polarization, forward-backward asymmetry A_{FB}
 - Direct CP asymmetry
- => measure magnitudes, relative signs of C_i^{eff} (may be altered by NP)
 Comparison w SM is more reliable than total rate
- Check lepton universality: rates to µµ vs ee (hep-ex/0604007)

 $\mathsf{B} \rightarrow \mathsf{K}^{(*)}\ell^+\ell^- \colon \mathsf{A}_{\mathsf{F}\mathsf{B}}$

- inclusive measurement preferred by theory large (~30X) bg from b->sγ, similar kinematics
- exclusive B-> { ρ/ω } γ experimentally feasible full reconstruction of decay

B->dy: first observation

 $B \rightarrow d\gamma : |V_{td}/V_{ts}|$

 $\left| \frac{V_{td}}{V_{t}} \right| < 0.19 \ (90\% \ CL)$

5SI July 2006

B⁺->T⁺V_T

Theory:

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = \frac{G_F^2 m_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

= (1.59±0.40) × 10⁻⁴

Experimentally nontrivial: ≥2v's
 Belle: hep-ex/0604018 447x10⁶ BB
 Full reconstruction of hadronic B⁺ decay -> what's left is B⁻

T⁻->μ⁻
$$\nabla_{\mu}v_{\tau}$$
, e⁻ $\nabla_{e}v_{\tau}$, π⁻ v_{τ} , π⁻π⁰ v_{τ} , π⁻π⁺π⁻ v_{τ}
(81% of channels)
examine additional calorimeter energy, E_{ECL}

$$\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau}) = (1.06^{+0.34+0.18}_{-0.28-0.16}) \times 10^-$$

First evidence

Babar: PRD 73, 057101 (2006) 232×10° BB B < 2.6×10⁻⁴ (90% CL)

 W^+ , H^+

$B^+ \rightarrow T^+ V_{T}$: CKM constraint

5SI July 2006

Kinoshita

<u>×</u>

Kinoshita

<u>.</u>

B⁰->T⁺ T⁻

SM: B ~ 2 × 10⁻⁷ BSM: direct lepton-quark coupling Babar: PRL 96, 241802 (2006) 232 × 10⁶ BB Full reconstruction of hadronic B⁰ decay Other (\overline{B}^0): τ -> μ - $\overline{\nu}_{\mu}\nu_{\tau}$, e- $\overline{\nu}_{e}\nu_{\tau}$, π - ν_{τ} , $\rho^{0}\nu_{\tau}$ examine residual calorimeter energy

Kinoshita

SSI July 2006

$B_d, B_s \rightarrow \gamma \gamma$

- W-loop, NP via e.g. H⁺
- SM:
 - B(B_d->γγ)~3 × 10⁻⁸
 - $B(B_s \rightarrow \gamma \gamma) \sim 0.5 1.0 \times 10^{-6}$
- BSM: enhanced up to 2 orders of magnifique

Strong GIM suppression of Mixing, Flavor-changing neutral currents (FCMC), CP violation --> opportunity to reveal NP search for FCNC: Babar - D⁺, D_s⁺ -> { π/K } $\ell^+\ell^-$, $\Lambda_c \rightarrow p\ell^+\ell^-$ (20 modes, 17 new limits) mixing Belle - PRL96, 151801 (2006) 400 fb⁻¹ D^{0} ->K⁺ π -; flavor tag by D^{*+} -> $D^{0}\pi$ +; fit decay time dist (separate mixed from doubly-Cabibbo-suppressed); rate $R_M < 4 \times 10^{-4}$ (95% CL) (SM: ~ 10⁻⁴) Babar - 230.4 fb⁻¹ D⁰->K⁺ π - π ⁰ Dalitz analysis of decay time dist Dalitz plot improves separation of mixing/DCSD R_M < 5.4 × 10⁻⁴ (95% CL)

SSI July 2006

Tau - SM clean, well understood -> look for violation of flavor, lep#, baryon#

- ℓγ
 - Babar: hep-ex/0508012 B(eγ) < 1.1 x 10⁻⁷ (90% CL)
 - Belle: BELLE-CONF-0653 (535 fb⁻¹)
 - B(eγ) < 1.2 x 10⁻⁷ (90% CL)
 - B(μγ) < 4.5 × 10⁻⁸ (90% CL)
 - New MSSM constraint:
- Baryonic

$$Br(\tau \rightarrow \mu \gamma) = 3.0 \times 10^{-6} \times \left(\frac{\tan \beta}{60}\right)^2 \times \left(\frac{\tan \beta}{60}\right)^2$$

- Belle hep-ex/0508044 B($\Lambda\pi^+$) < 1.4×10⁻⁷, B($\Lambda\pi^-$) < 0.72×10⁹⁰(90% CL)^{ev}
- ℓ h⁺h⁻ modes: ℓ { π/K }{ π/K }, ℓ { $\rho^0/K^{*0}/\phi$ }:
 - Belle hep-ex/0603036 UL= 1-8x10⁻⁷ (90% CL)
- ۰ الاج
 - Belle hep-ex/0605025 B(eK_s) < 5.6×10⁻⁸, B(μ K_s) < 4.9×10⁻⁸ (90% CL)

SSI July 2006