The WMAP results and cosmology

Rachel Bean Cornell University

SLAC Summer Institute July 19th 2006

Rachel Bean : SSI July 29th 2006 1/44

Plan

o Overview

- o Introduction to CMB temperature and polarization
- o The maps and spectra
- o Cosmological implications

What is WMAP?

o Satellite detecting primordial photons "cosmic microwave background"

Rachel Bean : SSI July 29th 2006 3/44

Science Team

- C. Barnes (Princeton)
- R. Bean (Cornell)
- C. Bennett (JHU)
- O. Dore (CITA)
- M. Halpern (UBC)
- R. Hill (GSFC)
- G. Hinshaw (GSFC)

N. Jarosik (Princeton)
A. Kogut (GSFC)
E. Komatsu (Texas)
M. Limon (GSFC)
S. Meyer (Chicago)
H. Peiris (Chicago)
M. Nolta (CITA)

- N. Odegard (GSFC)
- L. Page (Princeton)
- D. Spergel (Princeton)
- G. Tucker (Brown)
- L. Verde (Penn)
- J. Weiland (GSFC)
- E. Wollack (GSFC)

Plan

o Overview

- o Introduction to CMB temperature and polarization
- o The maps and spectra
- o Cosmological implications

CMB is a near perfect primordial blackbody spectrum

Universe expanding and cooling over time...

1) <u>Optically opaque plasma</u> photons scattering off electrons

> <u>The 'last scattering' of photons</u>
> ~300,000 years after the Big Bang, neutral atoms form and photons stop interacting with them.

3) '<u>Free Streaming' CMB</u> Thermalized (blackbody) photons at ~6000K diluted and redshifted by universe's expansion -> ~2.726K background we measure today.

Rachel Bean : SSI July 29th 2006 6/44

The cosmic equivalent of tree rings...

Rachel Bean : SSI July 29th 2006 8/44

Important comparisons with later observations

Rachel Bean : SSI July 29th 2006 9/44

Imperfections in the CMB are what we are really interested in

- Escape of photons from evolving gravitational potential wells at last scattering,
- o ...Translate into fluctuations in the blackbody photon temp at ~1/100,000 level

Cold spots = high density Hot spots = low density

 $\Phi(\mathsf{X})$

o Thomson Scattering interactions in photon-electron/baryon fluid characteristic scale $\lambda^{\sim} c_s t_{rec}$

 $\gamma \iff e^{-} \iff p^{+}$ Compton Coulomb scattering interaction

Rachel Bean : SSI July 29th 2006 10/44

CMB "Power Spectrum"

Rachel Bean : SSI July 29th 2006 11/44

CMB scattering gives a "2 for 1": Polarization too!

- Polarization created by Thomson scattering of photons with a non-zero quadrupole (l=2 spherical harmonic)
- o Polarization gives a purer imprint of early universe than temperature
 - Once electrons in atoms scattering processes stop
- o Polarization on scales below horizon scale at scattering
 - small scale polarization at recombination z~1088
 - Larger scale from reionization by the first stars z~25

Temperature & polarization patterns correlated

o Polarization pattern <-> velocity flow of matter from high to low density

- Predicts polarization should π out of phase with temperature

Rachel Bean : SSI July 29th 2006 13/44

CMB Polarization: Alternative descriptions

- Polarization <=> Stokes Parameters
 (Q,U) or E/ B modes analogous to EM.
 - E/B independent of axis choice <u>and</u> nicely divides underlying processes
- o Scalar perturbations only generate EE
 - EE polarization <=> matter density
 & CMB temperature
- o Only tensor perturbations can generate both EE and BB
 - BB insight into primordial gravity waves with little `contamination' from scalar modes

$$I_{ij} = egin{pmatrix} T+Q & U \ U & T-Q \end{pmatrix}$$

$$\begin{split} E(\hat{n}) &= Q(\hat{n})cos(2\phi) + Usin(2\phi) \\ B(\hat{n}) &= -Q(\hat{n})sin(2\phi) + Ucos(2\phi) \end{split}$$

Plan

o Overview

- o Introduction to CMB temperature and polarization
- o The maps and spectra
- o Cosmological implications

Temperature maps

Rachel Bean : SSI July 29th 2006 16/44

Multiple maps help extract CMB from galactic contaminants

<u>Spinning dust grains?</u> No detections reported Expect strict cutoff ~40GHz <u>Free- free emission</u> -Electron-ion scattering ~ $v^{-2.15}$ -Use large scale H α (H n=3->2) maps to estimate spatial contribution

As well as remove other systematics e.g. 1/f noise from Rachel Bean : SSI July 29th 2006 17/44 detectors

Despite smaller error bars, the χ^2_{eff} improves

Rachel Bean : SSI July 29th 2006 18/44

Polarization maps

Polarized foregrounds – evidence of role of galactic magnetic field

Magnetic Field Structure in external galaxies exhibit spiral structure

M83 6cm Polarized Int. + B-Vectors (VLA+Effelsberg)

M51 6cm Total Int. + B-Vectors (VLA+Effelsberg)

Copyright: MPIfR Bonn (R.Beck, C.Horellou & N.Neininger)

Copyright: MPIfR Bonn (R.Beck, N.Neininger, S.Sukumar & R.Allen)

Rachel Bean : SSI July 29th 2006 20/44

Same bisymmetric spiral pattern is a good global fit to the field structure

Polarization angle

Rachel Bean : SSI July 29th 2006 21/44

'Cleaning' out foregrounds

- Low frequency (K band) synchrotron profile of galaxy magnetic field
 - + Multi-frequency dust map and starlight polarization measurements
 - =a template to clean maps
- o Many people interested in galactic polarization
- o but for cosmologists they are contamination!

Rachel Bean : SSI July 29th 2006 22/44

Summary of power spectrum results

Rachel Bean : SSI July 29th 2006 23/44

Talk plan

o Overview

- o Introduction to CMB temperature and polarization
- o The maps and spectra
- o Cosmological implications

Cosmological input assumptions

o GR using Einstein's equations

 Homogeneity and isotropy using Friedmann equations

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3c^{2}}\rho$$
$$\ddot{\frac{a}{a}} = -\frac{4\pi G}{3c^{2}}(\rho + 3P)$$

- o Initial conditions from inflation– More later
- o Atomic processes at recombination
 - Thomson scattering
 - Atomic transitions
- o Explicit properties of matter/space
 - Standard particle model
 - Cold Dark matter
 - Cosmological constant
 - Spatial flatness

"The least questioned assumptions are often the most questionable" Pierre Paul Broca

Summary

A simple cosmological model with only 6 parameters fits the WMAP data $\{\Omega_b h^2, \Omega_m h^2, h, \tau, n_s, A_s\} => \chi^2/dof = 1.04$

- o Run model forward in time
 - predict cosmological evolution
- o Go backwards in time
 - to study early universe
- o Constrain variants on simplest model
 - open universe,
 - massive neutrinos
 - Dark energy models
 - Beyond power law inflation

Improvement in Parameters

Comparison of 1st year and 3rd year LCDM constraints

Rachel Bean : SSI July 29th 2006 28/44

Likelihood Analysis of Optical Depth

- Polarization data alone gives important information about reionization
 - $\tau = 0 => \Delta \chi^2_{eff} = +8$ vs bestfit $\tau > 0$
- More years of data will yield more insights into reionization e.g. 2 step process?
 - $x_e = 1$ for z<7
 - $x_e = x_e^0$ for 7<z<z_{rei}
 - **=>** 0.057<τ<0.17 (1σ)

10

>> WMAP fits predict H(z)

Luminosity distance prediction from WMAP alone

Rachel Bean : SSI July 29th 2006 30/44

WMAP fits predict galaxy and mass distribution

Predicted P(k) for SDSS and 2dF galaxy surveys from WMAP alone

WMAP fits predict primordial abundances

		CMB-based BBN prediction	Observed Value
Γ	$10^5 y_D^{FIT}$	$2.58\substack{+0.14\\-0.13}$	1.6 - 4.0
	$10^{5}y_{3}$	$1.05 \pm 0.03 \pm 0.03$ (syst.)	$< 1.1 \pm 0.2$
	Y_P	$0.24815 \pm 0.00033 \pm 0.0006 (syst.)$	0.232 - 0.258
L	[Li]	2.64 ± 0.03	2.2 - 2.4

(Steigman et al 2005)

Predictions of inflation

- o Acceleration induced by slow roll down scalar potential
 - Near scale invariant tilt
 - Small but non-zero tensor contribution r=T/S

- o Acceleration causes Hubble horizon decreases
 - Flatness is an attractor
 - Density fluctuations seeded by Gaussian quantum fluctuations

WMAP and Initial Conditions : constraining inflation

Constraints on power law initial $P(k) \propto k^{n-1}$ + tensors, r=A_T/A_S

n_s(k=0.002/Mpc)

n_s(k=0.002/Mpc)

Rachel Bean : SSI July 29th 2006 34/44

Alternative power spectrum models

Improvements again small, power law P(k) fits the data well

Reconstruction of P(k) in 15 k bins

Geometry of the universe

Massive neutrinos

	Σm_v (eV) 95% CL
WMAP only	2.0
WMAP+SDSS	0.93
WMAP+2dF	0.90
CMB +LSS + SN	0.68

Rachel Bean : SSI July 29th 2006 37/44

Dark Energy

Sensitive to assumptions about clustering properties of Dark Energy

Rachel Bean : SSI July 29th 2006 38/44

Robustness of dark energy constraints....

w + curvature -0.8 - CMB + SN + LSS -1.0 - 0.06 - 0.04 - 0.02 - 0.00 - 0.02 - 0.04

Rachel Bean : SSI July 29th 2006 39/44

Beyond WMAP : Applying WMAP to new tasks

o Cross-correlation with structure :

- Exciting opportunities to probe dark energy, reionization ...
- o Complementary cosmological experiments
 - Crucial complementary parameter constraints from precise understanding of physics at last scattering

- o Future CMB experiments:
 - Mapping the foregrounds
 - Calibration

Small scale CMB / SZ surveys Implications for dark matter/ dark energy research

Ground based e.g.:
-SZA ~100 clusters, 12 sqdeg, z~1, 2004

-APEX ~1000, 200sqdeg, 2005

-ACT ~1000 clusters, 100 sqdeg, z~1.4, early 2006, photometric support from SALT

-SPT ~10,000 clusters, 4,000 sqdeg, z~1.2, 2007, photometric support from DES

- o Satellite :
 - Planck, ~ 15,000 clusters, z~1, 2007
- o And others ...

CMB polarization large and small scale: Primordial gravity waves & CMB lensing ...

Experiment	Location	Status	Experiment	Location	Status
PIQUE	Ground	Observing	EBEX	Balloon	Building
WMAP	L2	Observing	BICEP	Ground	Observing
DASI	Ground	Observing	Quest	Ground	Building
CBI	Ground	Observing	Maxipol	Balloon	Analyzing
QUAD	Ground	Observing	Planck	L2	Building
Amiba	Ground	Building	Clover	Ground	Funded

Ground based DIRECT detections vital counterpart

- o Astrophysical sources detected on earth
 - Temper and test indirect observations
- o Dark matter searches
 - CDSM Soudan Mine, Minessota , US
 - UKDMC Boulby Salt Mine, Yorkshire ,UK
 - DAMA Gran Sasso underground lab, Italy

o LHC

- Beyond the standard model
- Existence of extra dimensions
- Do scalar particles exist?

Conclusions

• WMAP now has full sky temperature and polarization maps

- Polarization reionization signature breaks cosmological degeneracies
- Simple Λ CDM cosmological model has survived its most rigorous test
- Starting to constrain inflationary parameter space
- Rich prospects from combining/ correlating WMAP with other complementary data
- Future CMB polarization experiments promise of the universe when it was a trillionth of a second old
- Direct measurement on earth of dark matter particles / extra dimensions and a scalar particle will play a crucial role in progressing theoretical understanding