Status of Neutrino Physics

Vernon Barger

SLAC Summer Institute July 27, 2006

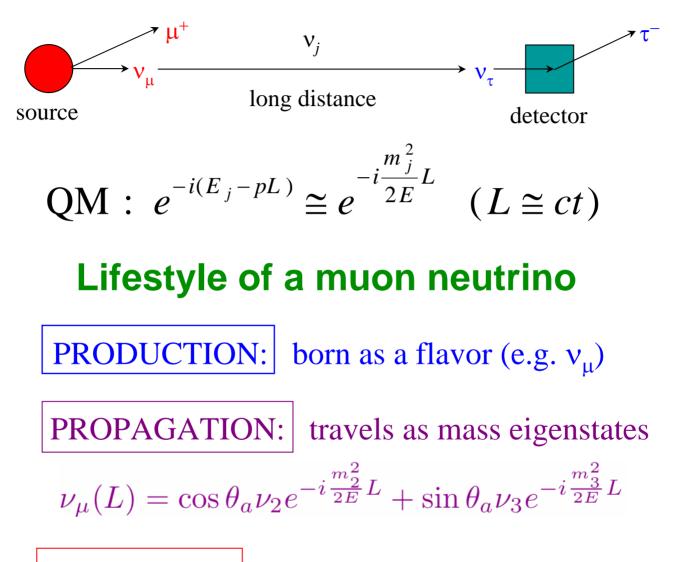
Outline

- The 3v paradigm
- Neutrino oscillations
 - ATM, solar, reactor, future
- Absolute m_{ν}
- Neutrino cosmology

 BBN, CMB, galaxy surveys
- New ideas
 - MaVaNs

Pre 1998: Standard Model $m_v = 0$

1998-present: The Neutrino Revolution Neutrino flavors oscillate \Rightarrow neutrinos have mass New SM: minimal SM extensions With L-conservation add v_R : Dirac v ($v \neq v^c$)


$$L = L_{SM} - m_v \overline{\nu}_L \nu_R + \text{ h.c.}$$

With L not conserved: Majorana v ($v=v^c$)

$$L = L_{SM} - \frac{1}{2} m_v \overline{\nu}_L v_L^c + \text{ h.c.}$$

Note: oscillations give no information on: Dirac vs. Majorana absolute v-mass (only probe $m_i^2 - m_j^2$)

How do oscillations occur?

DETECTION: dies as a flavor (v_{μ} or v_{τ})

Weak charged currents connect flavor eigenstates $|v_{\alpha}\rangle$ $\alpha = e, \mu, \tau$

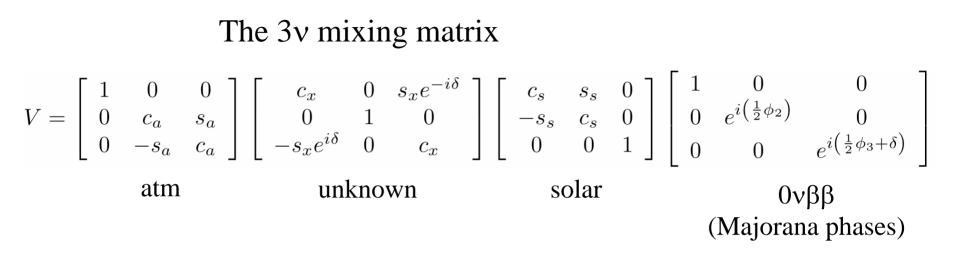
The flavor eigenstates are mixtures of mass eigenstates

$$|\nu_i\rangle$$
 $i=1,2,3$

The mixing is described by a unitary matrix V

$$\left|\nu_{\alpha}\right\rangle = V_{\alpha j}^{*} \left|\nu_{j}\right\rangle$$

Probability of detecting flavor β at a discrete distance L from a source that produced flavor α


$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{ab} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[V_{\alpha i}^{*} V_{\beta i} V_{\alpha j} V_{\beta j}^{*}] \sin^{2} \Delta_{ij}$$
$$+ 2 \sum_{j \neq i}^{n} \operatorname{Im}[V_{\alpha i}^{*} V_{\beta i} V_{\alpha j} V_{\beta j}^{*}] \sin(2\Delta_{ij})$$

Oscillation argument

$$\Delta_{ij} = 1.27 \frac{\delta m_{ij}^2}{\mathrm{eV}^2} \frac{L/E}{\mathrm{km/GeV}}$$
$$\delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

Data have probed sub-eV² neutrino mass-squared differences

Three Neutrino Paradigm

3 angles
$$(\theta_a, \theta_s, \theta_x)$$

1 Dirac phase (δ)
2 Majorana phases (ϕ_2, ϕ_3)
 $\delta \neq 0$ and $s_x \neq 0 \Rightarrow$

$$P(\overline{\nu}_{\alpha} \leftrightarrow \overline{\nu}_{\beta}) \neq P(\nu_{\alpha} \leftrightarrow \nu_{\beta})$$

CP-violation

Empirically, δm_a^2 and δm_s^2 are very different and their oscillations are nearly decoupled (θ_x small)

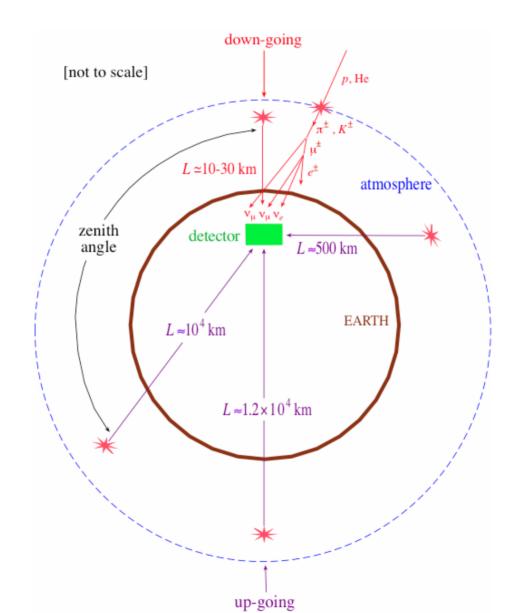
Effective 2-neutrino oscillations good first approximation with one δm^2 is dominant

$$P(\nu_{\alpha} \to \nu_{\beta}) \cong \sin^{2} 2\theta \sin^{2} \Delta$$
$$P(\nu_{\alpha} \to \nu_{\alpha}) \cong 1 - \sin^{2} 2\theta \sin^{2} \Delta \qquad \Delta = \frac{\delta m^{2} L}{4E}$$

Recap of the evidence for neutrino oscillations

Atmospheric neutrinos

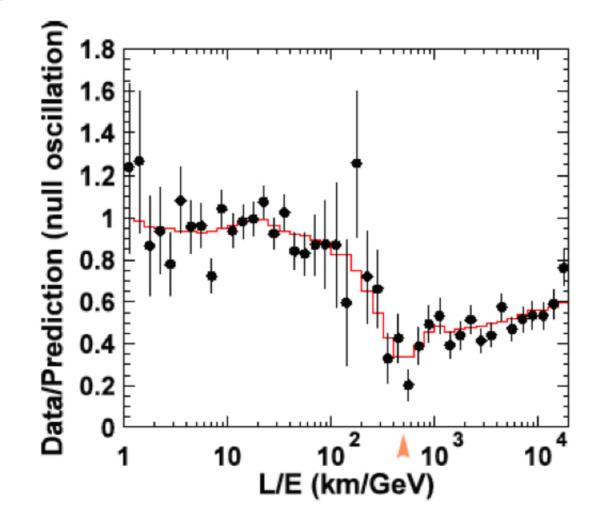
$\nu_{\mu} \leftrightarrow \nu_{\mu}$	depletion observed ($> 15\sigma$)
$v_{\mu} \leftrightarrow v_{e}$	excluded ($> 5\sigma$)*
$v_{\mu} \leftrightarrow v_{\tau}$	inferred


Vacuum oscillations

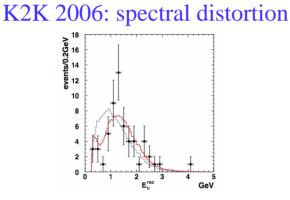
 $P(\nu_{\mu} \rightarrow \nu_{\mu}) = \sin^{2} 2\theta_{a} \sin^{2} \frac{\delta m_{a}^{2} L}{4E_{\nu}}$ $\delta m_{a}^{2} \approx 2 \times 10^{-3} \text{ eV}^{2}$ Large mixing $\theta_{a} = 45 \pm 10^{\circ}$ 95% C.L.

* θ_x small

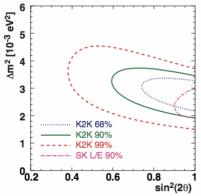
Also from CHOOZ reactor experiment for $\overline{v}_e \leftrightarrow \overline{v}_e$ disappearance $\sin^2\theta_x < 0.05$

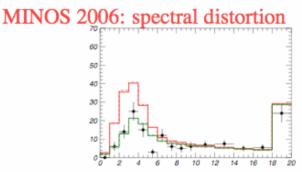

Atmospheric Neutrinos

Atmospheric v oscillations

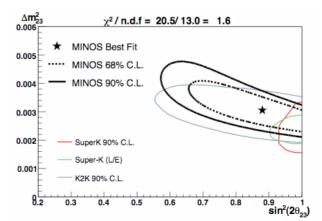

 $V_{\mu} \leftrightarrow V_{\mu}, \overline{V}_{\mu} \leftrightarrow \overline{V}_{\mu}$

SuperK data

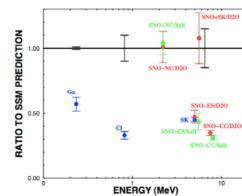



Accelerator Confirmation of ATM oscillations

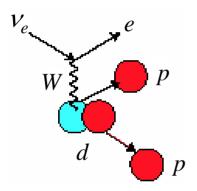
K2K: v_{μ} beam from KEK to Kamiokande L = 250 kmMINOS: v_{μ} beam from Fermilab to Soudan L = 735 km



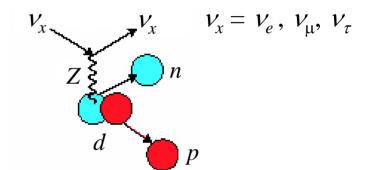
Confirmation of ATM oscillations


Confirmation of ATM oscillations

Solar neutrinos


Interior of sun well-modeled and v_e flux predicted

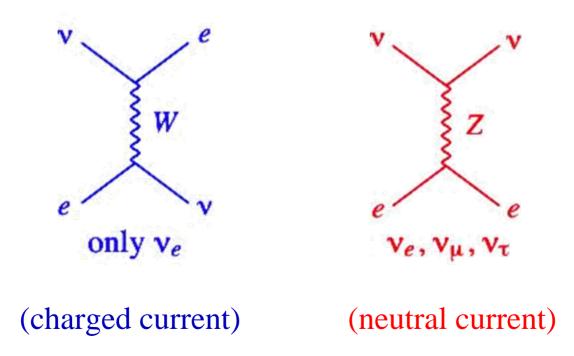
 $p + p \rightarrow {}^{2}\text{H} + e^{+} + \nu_{e} \quad {}^{7}\text{Be} + e^{-} \rightarrow {}^{7}\text{Li} + \nu_{e} \quad {}^{8}\text{B} \rightarrow {}^{8}\text{Be} + e^{+} + \nu_{e}$ SuperK, SNO Chlorine Gallium 1018 Bahcall-Pinsonneault 2000 101 PP ±1% 1010 Neutrino Flux ±10% 10 9 ±10% ±1.5% 10 8 7Be 'Be 10 ' +20% •B −16% 10 * 10 * 10 4 10 her 10 * 10 1 0.1 0.3 1 10 Neutrino Energy (MeV) depletion observed (> 7σ) $V_{\rho} \leftrightarrow V_{\rho}$ SNO+SK/D2O SNO-NC/Salt SNO-NC/D2O


Experimental proof of solar v_e oscillations from the Sudbury Neutrino Observatory (SNO)

Measured CC

SNO sees v_e depletion

Measured NC


SNO sees predicted solar neutrino flux

So the "missing" v_e were converted to v_{μ} and v_{τ} by oscillations!

Essential Wrinkle

Neutrinos created in the solar core travel through dense matter to get out

The v_e scatter from electrons in the matter differently from other neutrinos, creating a different index of refraction for v_e Wolfenstein (1976)

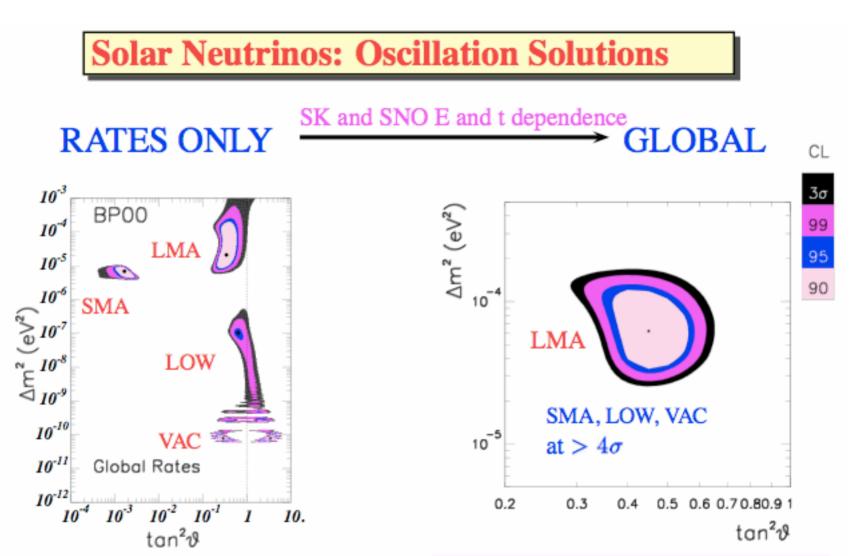
Resonance can occur in v_e oscillations!

$$\tan 2\theta_s^m = \frac{\tan 2\theta_s}{1 - \beta / \cos 2\theta_s} ; \quad \beta = \frac{\lambda_m}{\lambda_{\text{vac}}} = \frac{2\sqrt{2}G_F n_e E_v}{\delta m_s^2}$$

 $A = 2\sqrt{2}G_F N_e E_v$

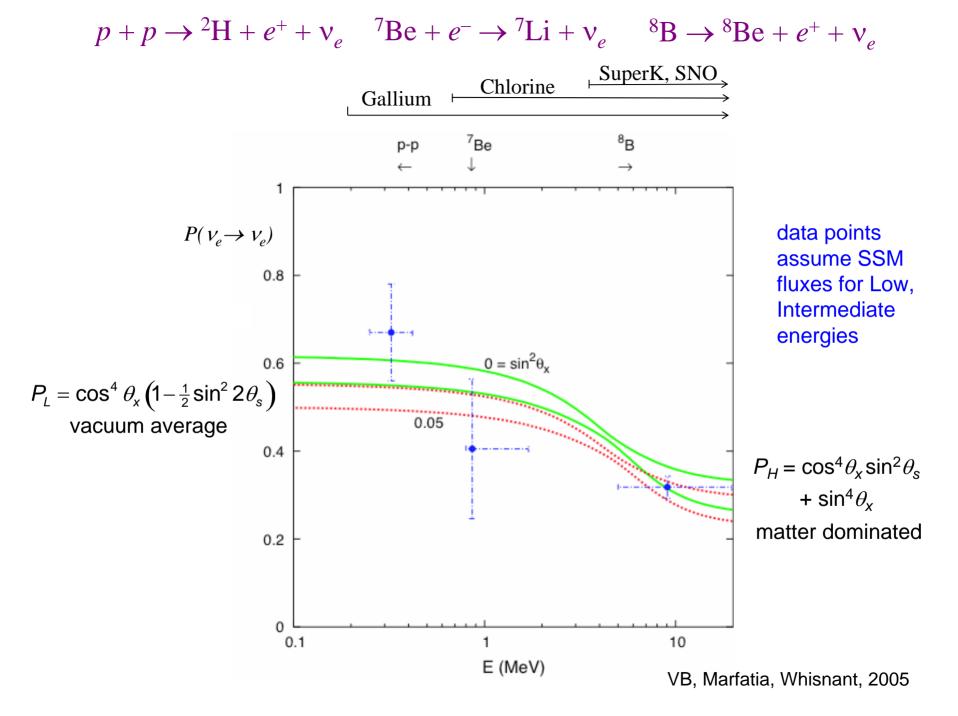
Barger, Pakvasa, Phillips, Whisnant (1980)

 $sin^2 2\theta^m$ enhancement for $\delta m^2 > 0$


Matter resonance proposed as explanation of the solar neutrino deficit (MSW)

Natural: small θ_s amplified by resonance (SMA solution) Mikheyev-Smirnov (1985)

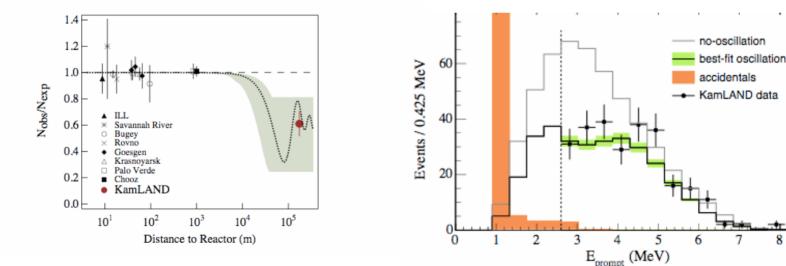
But global fits select LMA solution

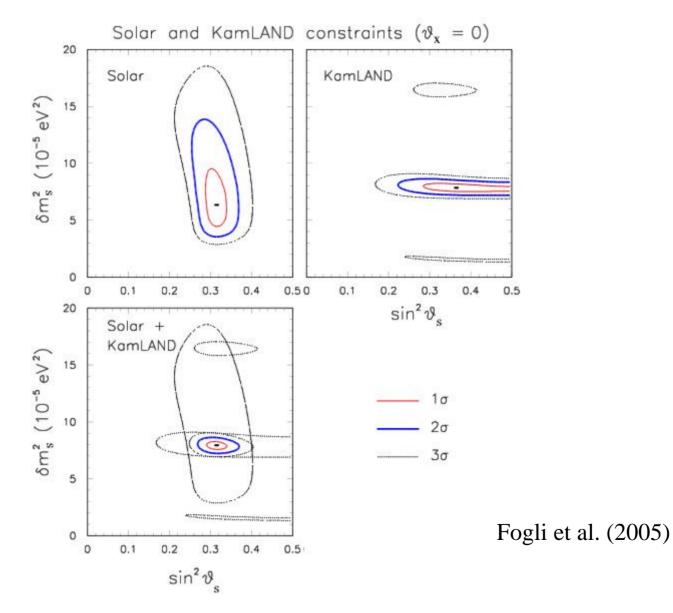

Neutrinos propagate adiabatically through the matter resonance - no level crossing

$$\delta m_s^2 \approx 6 \times 10^{-5} \text{ eV}^2$$

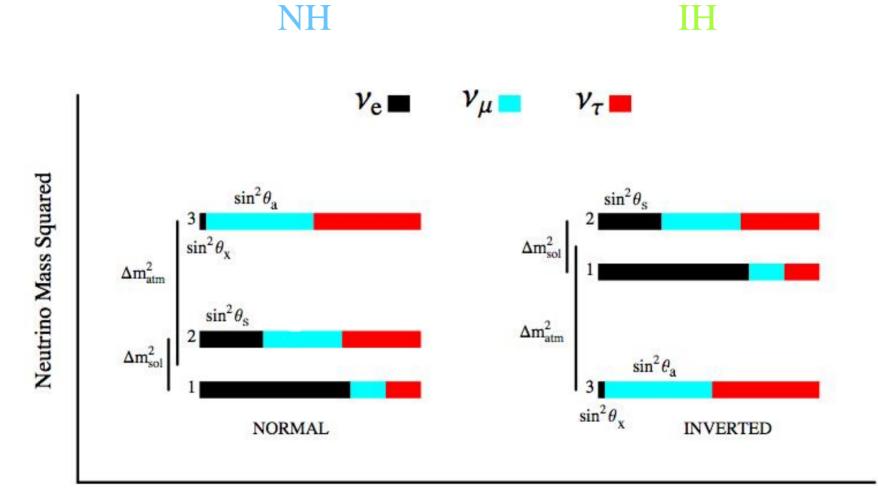
 $\theta_s \approx 33^o$

$$\begin{split} \Delta m^2 &= \left(6.3^{+2.3}_{-1.9} \right) \times 10^{-5} \ \mathrm{eV^2} \ (1\sigma) \\ \tan^2 \theta &= 0.45^{+0.05}_{-0.04} \end{split}$$


C. Gonzalez-Garcia et al.


KamLAND reactor confirmation of LMA $\overline{v}_e \leftrightarrow \overline{v}_e$ at L ~ 180 km, $E_{\overline{v}}$ ~ few MeV $\overline{v}_e + p \rightarrow n + e^+$ [assume CPT : $P(\overline{v}_e \rightarrow \overline{v}_e) = P(v_e \rightarrow v_e)$]

2002: Deficit $R_{\text{KLAND}} = 0.611 \pm 0.094$


2004: Energy Distortion

Solar + KamLAND

State composition for two possible mass orderings

Fractional Flavor Content

Still Unknown

 θ_{r}

 $sign(\delta m_a^2)$

 $v_{\mu} \rightarrow v_{e}$ oscillations at δm_{a}^{2} scale not seen; θ_{x} small for unknown reason

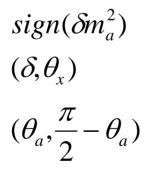
Can be resolved by earth matter Effects on $v_{\mu} \rightarrow v_{e}$ oscillations in Earth provided that $\theta_{x} \neq 0$

Enhance $P(\nu_{\mu} \rightarrow \nu_{e})$ and suppress $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ or vice versa depending on sign (δm_{a}^{2})

Summary of knowns and unknowns

3v observable	Present knowledge (1σ)
$ \delta m_a^2 $	$(2.05\pm_{0.4}^{0.4})\times10^{-3} \text{ eV}^2$
$sign(\delta m_a^2)$	unknown
$ \delta m_s^2 $	$(8.0\pm_{0.5}^{0.4})\times10^{-5} \text{ eV}^2$
$sign(\delta m_s^2)$	+
$\tan^2 \theta_a$	$1.00^{+0.38}_{-0.27}$
$\tan^2 \theta_s$	$0.45^{+0.05}_{-0.05}$
$\sin^2 heta_x$	< 0.045
δ	unknown
Majorana/Dirac	unknown
ϕ_2, ϕ_3	unknown
m_{ν}	$\sum m_{v} \le 0.6 \text{ eV} \text{ (cosmology)}$

The ultimate goal of long-baseline experiments is to determine the CP-violating phase δ

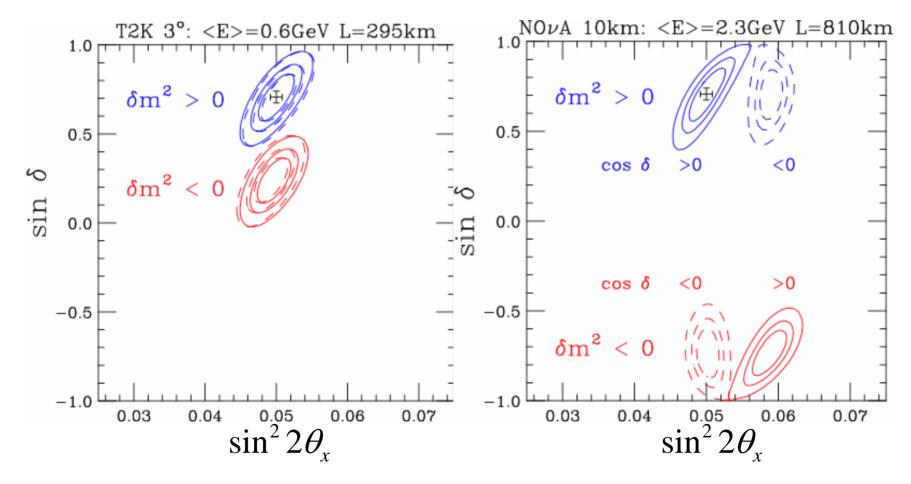


$$P(\nu_{\mu} \to \nu_{e}) \neq P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})$$
$$\Delta P \propto \left(\frac{\delta m_{s}^{2}}{\delta m_{a}^{2}}\right) \sin 2\theta_{x} \sin \delta$$

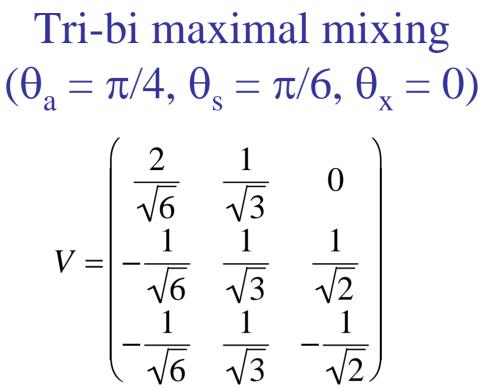
Both δm_s^2 and δm_a^2 oscillations must contribute to have CP violation

Must distinguish intrinsic CP-violation from fake CP-violation due to matter effects

8-fold parameter degeneracy



Can be resolved with long baseline experiments


Barger, Marfatia, Whisnant

T2HK and NOvA are complementary

Combining results from 2 long-baseline experiments eliminates fake solutions caused by matter effects

Mena and Parke

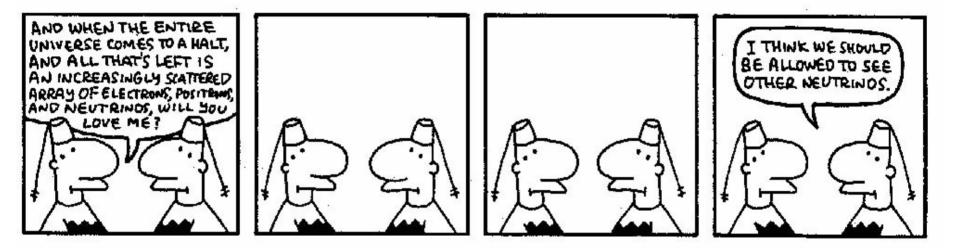
Harrison, Perkins, Scott

Theoretical basis uncertain: models proposed

Consistent with all present data

Alas, if true,

- No δm_a^2 dependent Earth matter effects
- No CP violation


3 neutrino paradigm in great shape with one possible exception:

LSND evidence for $\overline{\nu}_{\mu} \leftrightarrow \overline{\nu}_{e}$ oscillations with $\delta m_{\text{LSND}}^{2} \sim 1 \text{ eV}^{2} \text{ and } \theta_{\text{LSND}} \sim 10^{-2}$

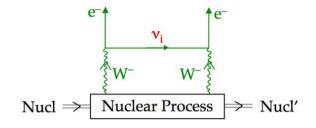
Oscillations to sterile neutrinos invoked:

<u>Active</u>	<u>Sterile</u>	<u>extra</u>
3	2	-
3	1	CPT violation
3	1	MaVaNs
3	1	Sterile decay
3	1	Extra dim
3	-	Quantum decoherence

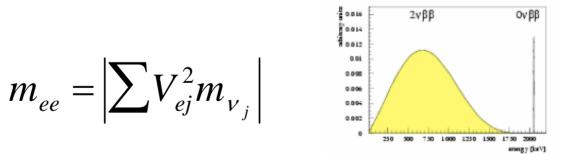
Fermilab MiniBooNE experiment will test these speculative models

Life in Hell by Matt Groening

Absolute neutrino mass

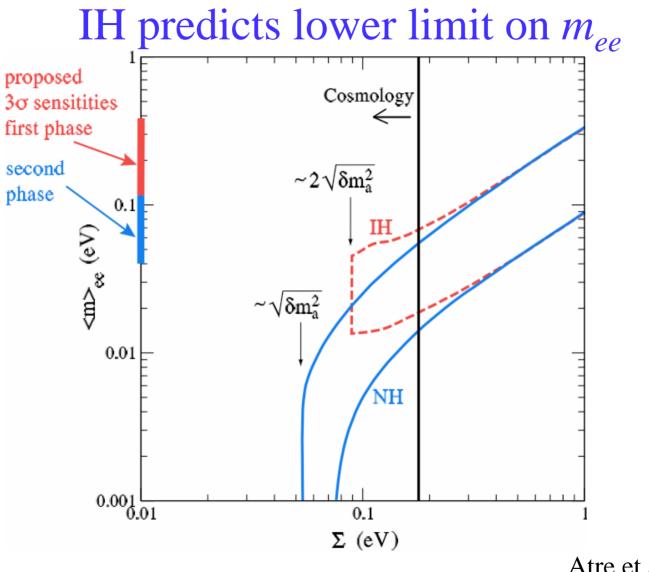

• ³H beta decay: Mainz experiment

$$m_{\beta} = \left(\sum |V_{ei}|^2 m_{v_i}^2 \right)^{1/2} < 2.2 \text{ eV}$$


Future: KATRIN sensitivity down to 0.3 eV

• Neutrinoless nuclear double beta decay

$$N(n,p) \rightarrow N(n-2,p+2) + 2e^{-1}$$



Occurs only if neutrinos are Majorana $\overline{v}_i = v_i$ (usual theoretical prejudice)

Heidelberg-Moscow experiment:

Upper limit: $m_{ee} < 0.35$ eV at 95% C.L. $m_{ee} = 0.1 - 0.9$ eV controversial detection

Atre et al. (2005)

Future U.S. neutrino program goals

Nu-SAG charges (2006) [Neutrino Scientific Assesment Group]

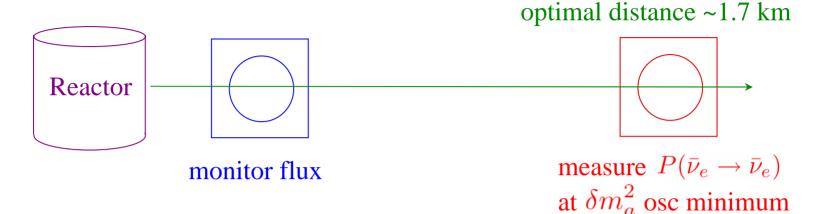
1. Reactor experiment with θ_x sensitivity down to

 $\sin^2 2\theta_x = 0.01 \quad (\text{now } \sin^2 2\theta_x < 0.19)$

Daya Bay (Double Chooz)

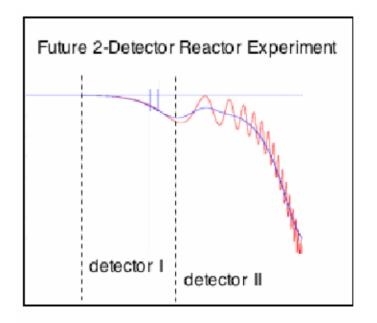
 Neutrinoless nuclear double beta decay experiments (different nuclei) CUORE, EXO, Majorana

GERDA, Super Nemo, Moon

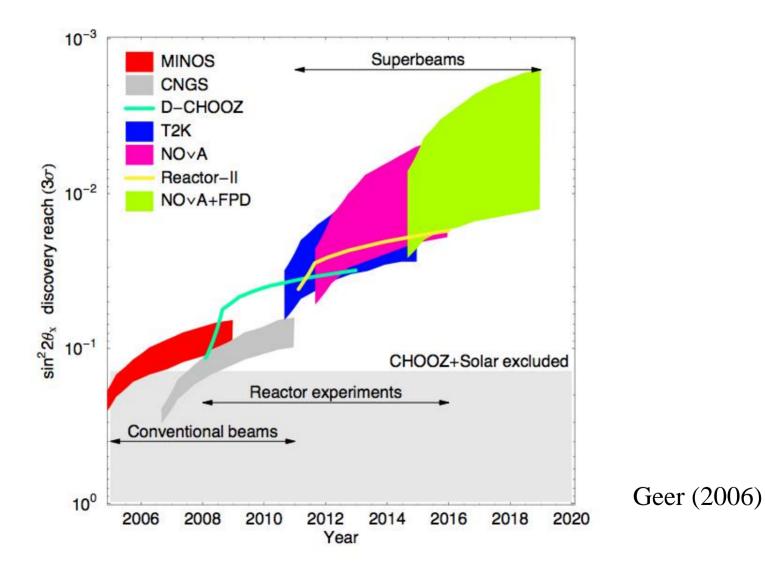

3. Accelerator experiment with θ_x sensitivity down to

 $\sin^2 2\theta_x = 0.01$

and sensitivity to the mass-hierarchy through matter effects T2K (Japan), NOVA (US)


Reactor experiments

Measure θ_x via disappearance with two detectors



Double Chooz (approved)

 $\sin^2 2\theta_x$ sensitivity: 0.02 at 90% C.L.

The race for θ_x discovery

Off-axis neutrino beams Superbeams Neutrino Factory β -beams + new detector technologies

Approximate discovery reaches in $\sin^2 2\theta_x$

-		
Current limit	10-1	
Reactor	10-2	
Conventional π -beam	10 ⁻²	
Superbeam	3 × 10 ⁻³	
NuFact (entry level)	5 × 10 ⁻⁴	
NuFact (high performa	nce) 5 × 10 ⁻⁵	
β-beams	comparable to NuFact (10-	³ -10 ⁻⁴)

Pursue θ_x as small as we need to go!

Primordial Neutrinos

⁴He primordial abundance in BBN

$$Y_p \cong \frac{2n_n / n_p}{1 + n_n / n_p} \bigg|_{T_{freeze}} \qquad n_n / n_p \sim e^{-(m_n - m_p) / T_{freeze}}, \ T_{freeze} \sim 1 \text{ MeV}$$

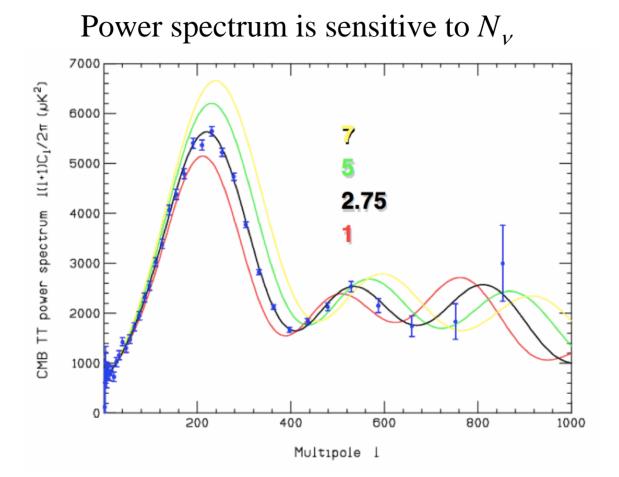
Extra light neutrinos

$$\Delta N_{\nu} = N_{\nu} - 3$$

would speed up expansion

$$\frac{H_{new}}{H_{std}} = \left(1 + \frac{7}{43}\Delta N_v\right)^{\frac{1}{2}} \qquad \qquad \mathbf{H} = \mathbf{\dot{A}}/a$$

giving earlier n/p freeze - out and higher ⁴He abundance for $\Delta N_{\nu} > 0$ Revised estimates of primordial helium abundance


 $Y_p = 0.249 \pm 0.009$ Olive-Skillman (2004) $Y_p = 0.250 \pm 0.004$ Fukugita-Kawasaki (2006)

BBN +
$$Y_p$$
 + η_{CMB} (baryon / photon ratio):
 $1.7 \le N_{\nu} \le 4.5$ at 95% C.L. Cyburt et al. (2004)

- Preferred N_{ν} consistent with 3
- Neutrino contribution to radiation density established (lower bound on N_{ν})
- $N_{\nu} = 4$ allowed

LSND neutrino thermalizes giving $N_v = 4$

Neutrino counting with CMB

But N_{ν} correlated with $\Omega_{M}h^{2}$

Analyze CMB data along with data that constrain Ω_M

CMB	WMAP 3 - year	$(\Omega_{\Lambda} + \Omega_{M})h^{2}$
	+ other CMB	

SN	Supernova	$(\Omega_{\Lambda} - \Omega_{M})h^{2}$
	gold + SNLS	$(\Sigma_{\Lambda} \Sigma_{M})^{n}$

LSS	Galaxy clustering	$(\Omega_{\Lambda},\Omega_{M})h$
	SDSS & 2dF	

BAO Luminous red galaxies $\Omega_M h^2$

LYA Lyman - α forest $\Omega_M h$

• Barger et al (2003) WMAP-1 + H₀

- Spergel et al (2006) WMAP-3 + other CMB + SN + LSS
- Seljak et al (2006) ... + LYA + BAO

$$N_v$$
 (with $\Sigma m_v = 0$) at 2σ

$$0.9 < N_{\nu} < 8.3$$

$$N_{\nu} = 3.29^{+0.45}_{-2.18}$$

$$N_{\nu} = 5.1^{+2.1}_{-1.7}$$

(N_v=3 allowed only at 3σ)

• Hannestad et al (2006) CMB + LSS

$$2.7 < N_{_V} < 4.6$$

Excellent accord of BBN (20 min), CMB (380,000 years) and LSS (10 Gyr)

 $N_v = 4 \text{ OK}$

Neutrino Mass from the CMB

Massive neutrinos slow the growth of small scale structure Joint analyses of CMB and LSS data constrains Σm_v

$$\Sigma m_v$$
 (for N_v = 3)

- Barger et al (2004) WMAP-1 + LSS + H₀ + other CMB
- Spergel et al (2006)

$$< 0.75 \text{ eV}$$
 (2 σ)

<0.68 eV

(1**σ**)

• Seljak et al (2006)

<0.17 eV

(20)

• Hannestad et al (2006)

(2**σ**)

New Ideas:

Mass varying Neutrinos (MaVaNs) <u>Motivation</u>: dark energy density (2x10⁻³ eV)⁴ is comparable to neutrino mass splitting scale

$$\delta m_v^2 \sim (10^{-2} \text{ eV})^2$$

Proposal: relic neutrinos interact via a new scalar field ϕ (the "acceleron") and form a negative pressure fluid thatcauses the cosmic acceleration.Fardon, Nelson, Weiner (2005)

Very speculative, but very interesting!

<u>Mechanism</u>: sterile neutrino interacts through Yukawa couplings to the acceleron ϕ

A prototype low energy effective Lagrangian

$$L = m_D vN + \kappa \phi NN + \text{h.c.} + V(\phi)$$

v = left - handed active neutrino N = right - handed sterile neutrino $\kappa = \text{Yukawa coupling}$

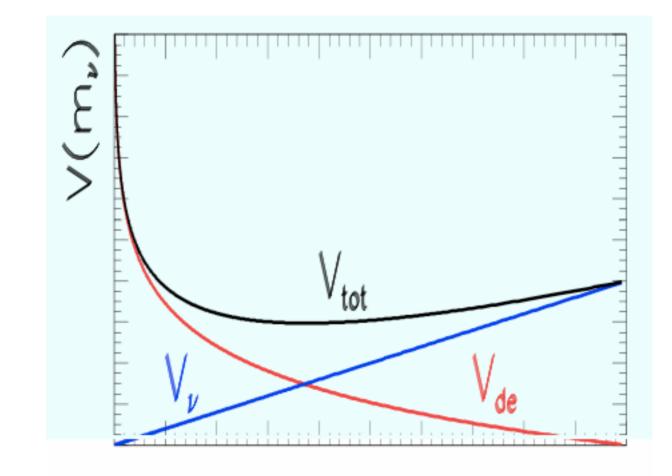
If
$$\kappa \phi >> m_D$$
 see-saw gives
$$L = \frac{m_D^2}{\kappa \phi} v^2 + \text{h.c.} + V(\phi)$$

Effective ϕ -dependent neutrino mass at late times:

$$m_{\nu}(\phi) = m_D^2 / |\kappa \phi|$$

FNW Dark Energy Scenario

- Neutrino mass a dynamical field which is a function of the acceleron field: $m_v(\phi)$
- Dark energy is the sum of the neutrino energy density and the scalar potential of the acceleron


 $\rho_{DE} = \rho_v + V(\phi)$ Non - Rel: $\rho_v = m_v n_v$

• $\rho_{\rm DE}$ is stationary with respect to m_{ν}

$$\frac{\partial \rho_{DE}}{\partial m_{v}} = 0$$

So, m_{ν} tracks the instantaneous minimum of the DE

Solution of stationary condition gives m_v as a function of *T* for a given $V(\phi)$

 m_{ν}

MaVaNs implications for neutrino mass in particle physics

Background m_{v} declines with redshift

But, a higher vacuum m_v causes clustering and the corresponding higher neutrino number density lowers the effective neutrino mass

Complicated interplay that remains to be quantitatively explored

Extension: ϕ also couples to matter, then local neutrino mass could vary with local mass density

Neutrinos would be most massive in a vacuum

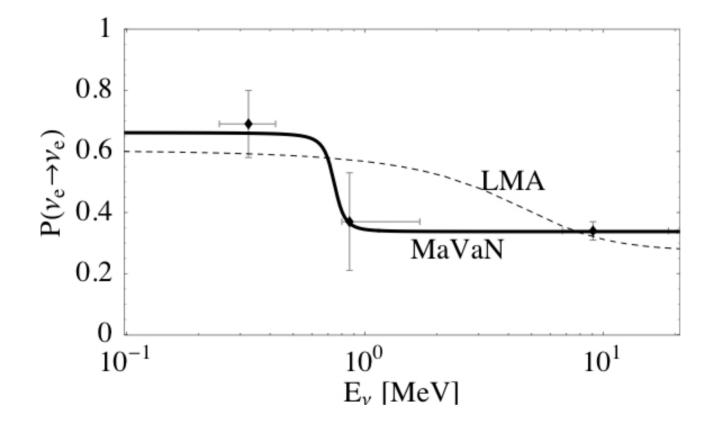
<u>Phenomenology</u>: MaVaN effects in addition to standard matter effects in neutrino oscillations

Revisit solar neutrinos (high densities)

Two-neutrino framework (v_e , v_{μ})

$$H_{\text{MaVaN}} = \frac{1}{2E} V \begin{pmatrix} (m_1 - M_1(r))^2 & M_3(r)^2 \\ M_3(r)^2 & (m_2 - M_2(r))^2 \end{pmatrix} V^+$$

 $V = 2 \times 2$ mixing matrix


$$H_{\text{matter}} = \frac{1}{2E} \begin{pmatrix} 2\sqrt{2}G_F E_v n_e(r) & 0\\ 0 & 0 \end{pmatrix}, \quad n_e \propto e^{-r/r_0}$$

 n_e^0 = electron density at production point

Introduce parameterization

$$M_i = \mu_i \left(\frac{n_e(r)}{n_e^0}\right)^k$$

 μ_i, k free parameters

VB, Huber, Marfatia (2005)

MaVaN oscillations with exotic matter effects comparable to standard matter effects allowed

• propagation inside sun still adiabatic - solar survival probability independent of how the neutrino masses depend on density

• can be tested with MeV and lower energy solar neutrino experiments (KamLAND, Borexino)

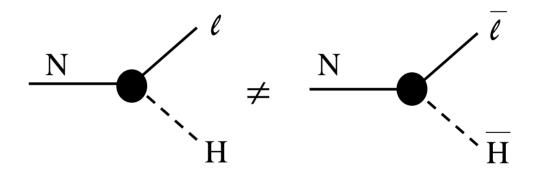
• are consistent with other neutrino oscillation experimental data (KamLAND, day night Earth effects, atm neutrino oscillations)

Why are neutrinos so light?

Favored explanation — the light neutrino masses are pushed down by mixing with very heavy neutrinos that are present in Grand Unified Theories

$$\begin{pmatrix} 0 & m \\ m & M \end{pmatrix}$$
$$m_{light} \cong \frac{m^2}{M} \qquad \frac{(100 \text{ GeV})^2}{10^{13} \text{ GeV}}$$

$$m_{heavy} \cong M$$


Eigenstates are dominantly Majorana

If so, light neutrinos are a "window" to new physics at energies that are inaccessible in the laboratory

Leptogenesis?

Matter-antimatter asymmetry from processes that violate CP in the early universe

Lepton asymmetry from decays of heavy righthanded neutrinos (CP-violating phase)

Baryon number asymmetry could be associated with lepton number asymmetry through SM sphaleron processes

Outlook

Sensitive new probes coming: New terrestrial experiments

• β , $0\nu\beta\beta$, reactor, long baseline experiments New cosmology observations

• Planck CMB

New ideas to be explored

Neutrino mass changes with density? Neutrino connection to dark energy?

The exciting physics of neutrinos is still unfolding.