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Introduction

Properties of DREG/DRED (status Jan. 2005)

DREG:

Dim. Regularization (DREG)
D dimensions
D Gluon/photon-components
4 Gluino/photino-components

DRED:

Dim. Reduction (DRED)
D dimensions
4 Gluon/photon-components
4 Gluino/photino-components
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Introduction

Regularization of SUSY

Motivation: some important observables/calculations. . .

(g − 2)µ

H
t̃ , b̃

→ no problem with regularization

1-Loop processes → DRED preserves SUSY!!

Mh

t̃

→ DRED SUSY-preserving??

LHC
g̃

q̃

g

q
→ DRED violates factorization!?

Dominik Stöckinger Regularization of SUSY



Introduction

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

DRED: consistent SUSY factorization
+ (+) (+)
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Introduction

There is no consistent SUSY regularization

theoretical question:
SUSY renormalizable? Anomalies?

↗
↘

practical question:
Which scheme is best in practical computations?
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Introduction

There is no consistent SUSY regularization

theoretical question:
SUSY renormalizable? Anomalies?

↗
Renormalizability, no anomalies: proven indep. of reg.
SUSY [Piguet, Sibold 1985] [Piguet et al],
MSSM [Hollik, Kraus, Roth, Rupp, Sibold, DS 2002]

↘
practical question:
Which scheme is best in practical computations?
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Introduction

There is no consistent SUSY regularization

theoretical question:
SUSY renormalizable? Anomalies?

↗
Renormalizability, no anomalies: proven indep. of reg.
SUSY [Piguet, Sibold 1985] [Piguet et al],
MSSM [Hollik, Kraus, Roth, Rupp, Sibold, DS 2002]

↘
practical question:
Which scheme is best in practical computations? This talk
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Consistency of DRED

Where does the inconsistency come from?

DREG: “D-dimensional space” can be consistently defined
⇒ no inconsistency like 1=0: [Wilson’73],[Collins]

DRED: in original form: problem

1 algebraic id.: g(4)
µνg(D)

ρ
ν = g(D)

µ
ρ etc

2 4-dim id.: det







gµ1ν1 . . . gµ1ν5

...
...

gµ5ν1 . . . gµ5ν5






= 0, Fierz, . . .

(1)+(2) ⇒ inconsistent, 1=0
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Consistency of DRED

Consistent DRED

Idea:
Use only algebraic id. (1) but no 4-dim id. (2)

should be consistent [Avdeev, Chochia, Vladimirov 1981]

mathematical construction of quantities satisfying (1) possible
⇒ proof: DRED is mathematically consistent if only (1) is used [DS

2005]

Consequences in practice:

algebraic id. of DRED as usual

one cannot rely on index counting or Fierz identities

for many SUSY loop calculations, this doesn’t make a difference
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Consistency of DRED

Quantum Action Principle in DRED

Using the consistent formulation of DRED, one can prove the quantum
action principle in DRED

i δSUSY〈Tφ1 . . . φn〉 = 〈Tφ1 . . . φn∆〉

Useful to study symmetry-properties of regularizations

Proof has to be carried out for each regularization,

BPHZ [Lowenstein et al ’71]

DREG [Breitenlohner, Maison ’77]

DRED [DS 2005]
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Factorization in DRED

Factorization-problem

Problem: DRED, m 6= 0

σDRED(GG → t t̄G)
2‖3
−→ ∼

1
k2k3

Pg→gg σDRED(GG → t t̄)

+
1

k2k3
Kg σpuzzle

[Beenakker, Kuijf, van Neerven, Smith ’88] [van Neerven, Smith ’04] [Beenakker, Höpker, Spira, Zerwas ’96]

One “solution” in practice (unsatisfactory complication):
resort to DREG ⇒ SUSY-restoring cts necessary

Fundamental question: where does the seemingly non-factorizing
term σpuzzle come from?

Dominik Stöckinger Regularization of SUSY



Factorization in DRED

Factorization-problem

Problem: DRED, m 6= 0

σDRED(GG → t t̄G)
2‖3
−→ ∼

1
k2k3

Pg→gg σDRED(GG → t t̄)

+
1

k2k3
Kg σpuzzle

[Beenakker, Kuijf, van Neerven, Smith ’88] [van Neerven, Smith ’04] [Beenakker, Höpker, Spira, Zerwas ’96]

clue: mismatch!

Dim. Reduction (DRED)
D dimensions
4 Gluon/photon-components
4 Gluino/photino-components
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Factorization in DRED

DRED and the gluon

4-component
Gluon in DRED
G

=
D-component
gauge field
g

+
ε-scalars

φ

For polarization sums: g(4)
µν = g(D)

µν + g(ε)
µν

g and φ have to be treated seperately!
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Factorization in DRED

DRED and the gluon

4-component
Gluon in DRED
G

=
D-component
gauge field
g

+
ε-scalars

φ

For polarization sums: g(4)
µν = g(D)

µν + g(ε)
µν

g and φ have to be treated seperately!

Simple kinematics: σGG→qq̄ = σGg→qq̄ = σGφ→qq̄
e.g. GG → qq̄ (massless)

in general / here: σGG→qq̄ 6= σGg→qq̄ 6= σGφ→qq̄
GG → t t̄ (massive)
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Factorization in DRED

Factorization — result

Main result: m

reconciled DRED and factorization [Signer, DS ’05]

σDRED(GG → t t̄G) → PG→gG σGg + PG→φG σGφ

understood origin of non-factorizing term

Kg σpuzzle → Pφ→gφ [σGg − σGφ]
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Factorization in DRED

Factorization — result

Main result: m

reconciled DRED and factorization [Signer, DS ’05]

σDRED(GG → t t̄G) → PG→gG σGg + PG→φG σGφ

understood origin of non-factorizing term

Kg σpuzzle → Pφ→gφ [σGg − σGφ]

Practical consequences

hadron processes can be computed using DRED
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Supersymmetry and Mh-calculations

Symmetries of regularizations

In principle, we don’t have to bother whether a
regularization preserves symmetries
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Supersymmetry and Mh-calculations

Symmetries of regularizations

In practice, life is easier with a symmetry-preserving
regularization!
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Supersymmetry and Mh-calculations

Symmetries of regularizations

In practice, life is easier with a symmetry-preserving
regularization!

counterterms Γct also preserve symmetries:

g → g + δg, m → m + δm — “multiplicative
renormalization”

most common situation, often assumed without proof
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Supersymmetry and Mh-calculations

Problem: SUSY of DRED

DRED preserves SUSY in simple cases

Does DRED preserve SUSY in general?

Or at least in cases that are relevant in practice?
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Supersymmetry and Mh-calculations

DRED preserves SUSY — What does it mean?

SUSY ⇔ ST-identities 0 = δSUSY〈Tφ1 . . . φn〉

ST-identities must be satisfied after renormalization

DRED preserves SUSY if the ST-identities are already
satisfied on the regularized level
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Supersymmetry and Mh-calculations

Quantum action principle as a tool

Quantum action principle:

STI δSUSY〈Tφ1 . . . φn〉 = 0
l

valid in DRED ⇔ 〈Tφ1 . . . φn∆〉 = 0 ∆ = δSUSYL

Sample application: QCD-gauge invariance in DREG

δgaugeL
DREG
QCD = ∆ = 0 ⇒ δgauge〈Tφ1 . . . φn〉 = 0

⇒ DREG preserves all QCD Slavnov-Taylor identities at all orders
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Supersymmetry and Mh-calculations

Quantum action principle as a tool

Quantum action principle:

STI δSUSY〈Tφ1 . . . φn〉 = 0
l

valid in DRED ⇔ 〈Tφ1 . . . φn∆〉 = 0 ∆ = δSUSYL

application here: SUSY of DRED:

δSUSYL
DRED = ∆ 6= 0 gives rise to Feynman rules [DS ’05]

DRED probably does not preserve all SUSY-identities

but checking particular ST-identities is simplified using the Q.A.P.
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Supersymmetry and Mh-calculations

Higgs boson mass and quartic coupling

× ×

l

Higgs mass
Mh governed by quartic Higgs
self coupling λ

λ ∝ g2 in SUSY
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Slavnov-Taylor identity

expresses λ ∝ g2

If it is satisfied by DRED ⇔
multiplicative renormalization
o.k.

Needs to be verified at 2-loop
level

0 ?
= δSUSY〈hhhH̃〉
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Method:
Use quantum action principle

replace ST-identity by
〈∆hhhH̃〉 = 0 ⇔

0 ?
= δSUSY〈hhhH̃〉 ≡ 〈∆hhhH̃〉
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

STI valid if

〈∆hhhH̃〉 = 0 ⇔

ε̄ H̃

q q̃g̃, H̃

q

hh

h +. . . =0

Explicit computation ⇒ STI valid in DRED at two-loop level [Hollik, DS ’05]
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Supersymmetry and Mh-calculations

Quartic coupling and SUSY

h h

h h

λ

l

H̃

W̃

h

+
∝ g

h

h

h

H̃

H̃

. . .

finite

Results:
Two-loop STI valid in DRED
(in Yukawa-approximation,
O(α2

t ,b, αt ,bαs))

for Mh-calculation at this order,
multiplicative renormalization
correct

Previous calculations sufficient

Explicit computation ⇒ STI valid in DRED at two-loop level [Hollik, DS ’05]
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Supersymmetry and Mh-calculations

How much do we know now?

old: many SUSY identities checked in DRED:

1-Loop Ward identities [Capper,Jones,van Nieuvenhuizen’80]

β-functions [Martin, Vaughn ’93] [Jack, Jones, North ’96]

1-Loop S-matrix relation [Beenakker,Höpker,Zerwas’96]

1-Loop Slavnov-Taylor identities [Hollik,Kraus,DS’99] [Hollik,DS’01] [Fischer,Hollik,Roth,DS’03]

new: further 2-loop ST-identities [DS’05] [Hollik, DS’05]

Status:

sufficient for one-loop SUSY processes

sufficient for two-loop Higgs masses and further mass relations
⇒ multiplicative renormalization o.k.
⇒ no SUSY-restoring counterterms
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Supersymmetry and Mh-calculations

Summary: Properties of DREG and DRED

DREG: consistent SUSY-violation factorization
+ − +

DRED: consistent SUSY factorization
+ (+) (+)
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Conclusions

Summary & Outlook

Comparison of DREG and DRED:

Factorization: holds in DREG and DRED, slightly more
complicated in DRED due to different partons g, φ

→ streamlined prescription for hadron processes in DRED?

Consistency, quantum action principle: ok in DREG and DRED

SUSY: DREG breaks SUSY already in simplest cases, DRED
preserves SUSY in many cases up to 2-Loop, but not at all orders

→ further checks of e.g. RG-running at 3-Loops?
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