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outline

A “NNLL” computation • introduction

• outline of calculation using pNRQCD

• results and theoretical error

Electroweak effects • QED effects

• from e+e− → tt̄ to e+e− →W+bW−b̄

• unstable particle effective theory

Outlook • further improvements

• towards NNNLO
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introduction

γ/Z

t

te+

e−

. . .

R ≡ σ(e+e− → QQ)

σ(e+e− → µ+µ−)

problem with three scales:

• hard: m

• soft: ~p ∼ mv ∼ mαs

• ultrasoft: E =
√
s− 2m ∼ mv2 ∼ mα2

s

hierarchy of scales: m� mv � mv2 � ΛQCD

fixed order:

σ(= R) = v
X

n

“αs

v

”n
×
n

1 (LO);αs, v (NLO);α2
s, v

2, αsv (NNLO)
o

resummed:

σ = v
X

n

“αs

v

”nX

l

(αs log v)l ×
n

1 (LL);αs, v (NLL);α2
s, v

2, αsv (NNLL)
o

LoopFest V – p. 3/23



introduction

• exploit αs � 1 and v � 1 → double expansion

• identify modes [Beneke, Smirnov] ⇒ asymptotic expansion (method of regions)

hard kµ ∼ m

soft kµ ∼ mv

potential k0 ∼ mv2; ~k ∼ mv

ultrasoft kµ ∼ mv2

• integrate out ‘unwanted’ modes (final state described by potential quarks and
ultrasoft gluons):
QCD (h,s,p,u) −→ NRQCD (s,p,u)−→ pNRQCD (p|q ,u)

• matching of currents

• done to NNLO [Beneke et.al; Hoang et.al; Melnikov et.al; Yakovlev; . . .]

• use threshold mass, not pole mass [Bigi et.al; Beneke; Hoang et.al; Pineda]
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introduction

µh ∼ m

µs ∼ mv

µus ∼ mv2

sp

h

us

k

pNRQCD

NRQCD

QCD

underlying theory

LQCD(ψh, ψs, ψp, gh, gs, gp, gus)

effective theory I

LNRQCD(ψs, ψp, gs, gp, gus)

effective theory II

LpNRQCD(ψp, gus)
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calculation

In full QCD: q2 = s = (E + 2m)2

R(s) =
4π e2q

s
Im

»

−i
Z

d4x eiqx〈0|T{jµ(x)jµ(0)}|0〉
–

current: (Z exchange not included)

jµ ≡ Q̄γµQ→ c1 χ
†σiψ − c2

6m2
χ†σi (iD)2 ψ + . . .

in pNRQCD :

R(E) =
24πe2qNc

s

„

c21 − c1c2
E

3m

«

ImG(0, 0, E)
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calculation

NRQCD Lagrangian [Caswell, Bodwin, Braaten, Lepage]

LNRQCD = ψ†

 

iD0 + ck
~D2

2m

!

ψ +
c4

8m3
ψ† ~D4ψ − g cF

2m
ψ†σiBi ψ

+
g cD

8m2
ψ†
ˆ

Di, Ei
˜

ψ +
ig cS

8m2
ψ†σij

ˆ

Di, Ej
˜

ψ + (ψ ↔ χ)

+
dss

m2
ψ†ψ χ†χ+

dsv

m2
ψ†σiψ χ†σiχ

+
dvs

m2
ψ†Taψ χ†Taχ+

dvv

m2
ψ†σiTaψ χ†σiTaχ+ Llight

• all calculations in momentum space, using dimensional regularization in
D = 4 − 2ε dimensions thus e.g: σiBi = (i/4)[σi, σj ]Gij

• resum log(µh/µs) in ci and dij using renormalization group

• RGI: single heavy quark sector as in HQET [Bauer, Manohar, . . .]
RGI: four heavy quark operators [Pineda]
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calculation

pNRQCD Lagrangian [Pineda, Soto]

LpNRQCD = ψ†

„

iD0 +
∂2

2m

«

ψ + χ†

„

iD0 − ∂2

2m

«

χ

+

Z

d3r
“

ψ†Taψ
” −4πCFαs

q2

“

χ†Taχ
”

+

Z

d3r
“

ψ†Taψ
”

δV
“

χ†Taχ
”

+ ψ†

„

∂4

8m3
− gs ~x · ~E

«

ψ + χ†

„

− ∂4

8m3
− gs ~x · ~E

«

χ

• leading order Coulomb potential is LO effect

• remaining terms in potential, δV (Breit-Fermi potential, static potential [Schröder,
Peter], non-analytic potential . . .) included perturbatively

• (some) matching coefficients in δV have to be known in D dimensions

• ultrasoft effects enter at NNNLO
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calculation

The renormalization group improved pNRQCD potential: [Pineda, AS]

VNNLL = −4πCF

αṼs

~q 2

−CFCAD
(1)
s

π2

mq1+2ε
(1 − ε)

(4π)εΓ2( 1
2
− ε)Γ( 1

2
+ ε)

π3/2Γ2(1 − 2ε)

−
2πCFD

(2)
1,s

m2

~p 2 + ~p ′ 2

~q 2
+
πCFD

(2)
2,s

m2

 

„

~p 2 − ~p ′ 2

~q 2

«2

− 1

!

+
3πCFD

(2)
d,s

m2
−

4πCFD
(2)

S2,s

dm2
[Si

1,S
j
1][S

i
2,S

j
2] + . . .

• use renormalization-group equations to evolve potentials DX from µs to µus,
resumming logµs/µus. [Pineda]

• LL running of DX known → potential known at NNLL

LoopFest V – p. 9/23



calculation

We use dimensional regularization throughout, perform all calculations in momentum
space and always use MS-subtraction [Beneke, AS, Smirnov]

Gc(~r, ~r
′, E)

˛

˛

˛

˛

~r=~r ′=0

≡
Z

dd~p

(2π)d

dd~p ′

(2π)d
G̃c(~p, ~p

′, E)

Gc(0, 0, E) = −αs CF m2

4π

„

1

2λ
+

1

2
ln

−4mE

µ2
− 1

2
+ γE + ψ(1 − λ)

«

where λ ≡ CF αs/(2
p

−E/m) ; This sums all potential gluon (ladder) diagrams

for higher-order corrections evaluate single and double insertions

δGc(0, 0, E) =

Z

Y dd~pi

(2π)d
G̃c(~p1, ~p2, E) δV (~p2, ~p3) G̃c(~p3, ~p4, E)

� � �� � �� � �� � �� � �
� �� �� �� �� �

� � �� � �� � �� � �� � �
� �� �� �� �� �
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calculation

current

• c1 needed at two loop [Czarnecki, Melnikov; Beneke, AS, Smirnov]

• higher dimensional operators of single heavy quark sector mix into lower
dimensional operators in heavy quark-antiquark sector through potential loops

• need NLL matching coefficients of NRQCD to obtain NLL current ⇒ done
[Pineda; Hoang, Manohar, Stewart]

µs
d

dµs
c1 = −C

2
F

4
αs

„

αs − 2

3
D

(2)

S2,s
− 3D

(2)
d,s + 4D

(2)
1,s

«

− CACF

2
D

(1)
s

• however NNLL current not complete, only partial results available [Kniehl et.al;
Hoang; Penin et.al.] ⇒ NNLL → ’NNLL’

• these are the only missing NNLL terms
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calculation

vNRQCD vs. pNRQCD

• resummation of log v done before at “NNLL” using vNRQCD [Hoang, Manohar,
Stewart, Teubner]

• in vNRQCD there is only one step in the matching procedure and the correlation
between the scales is fixed from the start µus = µ2

s/m

• in the pNRQCD approach the correlation between the scales is taken into account
in the RG solutions

• done (so far) only for the spin dependent term [Penin, Pineda, Steinhauser,
Smirnov], thus NNLL ⇒ “NNLL”

• independent variation of µs and µh → more conservative error estimate, µh

dependence is now larger than µs dependence.

• ideally, we also would like to independently vary the ultrasoft scale µus, i.e.
µus = µ2

s/µh → µus ∼ µ2
s/µh; has not been done so far
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results

µs dependence of fixed-order results

-2 -1 0 1 2 3 4
EPS =

�!!!s -2 mPS

0.4
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0.8

1

R
=

Σ
tt�Σ ΜΜ

Μs = 40 - 80 GeV

NLLLL NNLL µ2
s ∼ 4mt

q

E2 + Γ2
t

mPS = 175 GeV

Γt = 1.4 GeV

µF = 20 GeV

• normalization of cross section has a large theoretical error, scale dependence
increases from NLO to NNLO and NNLO corrections as large as NLO corrections!

• no top width / Yukawa coupling measurement
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results

µs dependence of renormalization-group improved results

-2 -1 0 1 2 3 4
EPS =

�!!!s -2 mPS

0.4
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0.8

1

R
=

Σ
tt�Σ ΜΜ

Μs = 40 - 80 GeV

Μs = 20 GeV

NLLLL NNLL

[Pineda, AS]

µ2
s ∼ 4mt

q

E2 + Γ2
t

mPS = 175 GeV

Γt = 1.4 GeV

µF = 20 GeV

• normalization of cross section much more stable, confirms previous results by
[Hoang, Manohar, Stewart, Teubner]

• µs scale-dependence bands do not overlap → estimate of theoretical error ??
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results

µs dependence of renormalization-group improved results
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[Pineda, AS]

µ2
s ∼ 4mt

q

E2 + Γ2
t

mPS = 175 GeV

Γt = 1.4 GeV

µF = 20 GeV

• ’problem’ with small scales solved by including multiple insertions of Coulomb
potentials [Beneke, Kiyo, Schuller]

• reliable region for soft scale: 30 GeV ≤ µs ≤ 80 GeV
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results

µh dependence of renormalization-group improved results
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EPS =
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NNLL

[Pineda, AS]

µ2
s ∼ 4mt

q

E2 + Γ2
t

mPS = 175 GeV

Γt = 1.4 GeV

µF = 20 GeV

• µh scale dependence larger than µs scale dependence

• µh scale-dependence bands do overlap → more reliable estimate of theoretical
error for normalization: ∼ 10%
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electroweak

leading order

• top quark propagator (E − ~p2

2mt

)−1 scales as 1
mv2

∼ 1
mα2

s

∼ 1
mαew

• the width Γt ∼ mαew is a LO effect, E → E + iΓ [Fadin, Khoze]

1

E − ~p2

2mt

→ 1

E − ~p2

2mt

+ iΓt
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��
��

����

Coulomb singularity v → 0 propagator pole Γ → 0

resum (αs/v)n (potential gluon exchange) resum (Γ/m)n (self-energy insertions)

systematic expansion in α and v systematic expansion in α and Γ
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electroweak

higher-order electroweak corrections for stable top

• NLO QED corrections: single potential photon exchange
suppressed by α/v ∼ α2

s/v ∼ v

V → V −
4πα e2q

q2

• NNLO QED corrections: double potential photon exchange
(α/v)2 ∼ v2 and hard corrections

c1 → c1 −
2e2qα

π

• beyond NNLO: many corrections of order ααs e.g. Higgs mass dependence δmt

up to 20 − 40 MeV [Eiras, Steinhauser]

� � �� � �� � �� � �� � �
� �� �� �� �� �
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electroweak

NLO and NNLO QED corrections for stable top
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[Pineda, AS]

µ2
s ∼ 4mt

q

E2 + Γ2
t

mPS = 175 GeV

Γt = 1.4 GeV

µF = 20 GeV

• shift in position of peak, i.e. δmt ∼ 100 MeV, about the same size as NNLL
corrections
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electroweak

electroweak corrections beyond “stable” top

• Strictly speaking, it does not make sense to talk about σ(e+e− → tt̄) (or any cross
section with an unstable particle in the final state).

• for threshold scan, δmt � Γt, thus σ(e+e− → tt̄) → σ(e+e− →W+W−bb̄)

• QCD and electroweak effects
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• electroweak effects are important! partially computed δmt = 30 − 50 MeV

[Hoang, Reisser]
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electroweak

effective theory approach to unstable particles

• use effective theory methods (again!) to systematically expand in small parameter
δ ≡ (p2 −m2)/m2 ∼ Γ/m [Chapovsky, Khoze, AS, Stirling]

• identify relevant modes (soft/resonant modes from HQET and NRQCD, collinear
modes from SCET) → asymptotic expansion [Beneke, Chapovsky, AS, Zanderighi]

• integrate out ‘unwanted’ modes → tower of effective theories (Unstable Particle
Effective Theory)

• hard effects correspond to factorizable corrections

• non-factorizable corrections due to still dynamical modes

• this is neither a “quick-fix” nor a “free lunch”, it is a method to identify the minimal
amount of calculation to be done for a systematic expansion in the small
parameters (as for NRQCD)

• gauge invariance is automatic since the split into the various contributions
respects gauge invariance
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outlook

• needed: c1 fully NNLL and all electroweak effects

• ultrasoft effects (retardation effects)
• due to chromoelectric

dipole operator ~x · ~E
• NNNLO effects α3

s

(NNLL part α3
s lnαs already included)

• potentially particularly important: α3
s ∼ α2

s(µs)αs(µus)

• full NNNLO.....
• compute all insertions (up to triple insertions), some results available:

[Beneke, Kiyo, Schuller]
• compute all potentials, some results available: [Kniehl, Penin, Steinhauser,

Smirnov]
• bottleneck: three-loop static potential and current matching coefficient

• more exclusive quantities
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conclusions

• the theory for tt̄ production near threshold is in good shape and further progress is
on its way

• achieving δmt ∼ 100 MeV and δRmax ∼ 3% relies on further theoretical progress
(and the patience to actually do a threshold scan!!)
• full NNLL !!
• at least ultrasoft (if not full) NNNLO
• fully take into account instability of top quark

• more exclusive final states ?

• tools are set up, but a lot of (tedious) additional work required

• this is one of the rare problems that is very fascinating from a theoretical point of
view and extremely relevant from an experimental point of view
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