On the path towards complete 2-loop corrections for Standard Model precision observables

A. Freitas

Zürich University

Introduction

Two-loop techniques

Results and outlook

Introduction

 \rightarrow

Open questions of the Standard Model:

• Where is the Higgs boson?

• Is there a extended / unified symmetry group?

- How can gravity be described?
- What makes Dark Matter in the universe?
- Why is there more matter than anti-matter in the universe?

Physics beyond the Standard Model

New particles and interactions beyond the Standard Model

Radiative effects

Virtual emission and re-absorption of **all** physical particles

→ Inference of information about Higgs boson and new physics from precision measurements even without direct observation

Precision observables

• Couplings of Z boson

to fermions with left-/right-spin

- effective weak mixing angle $\sin \theta^f_{\rm W, eff} = \frac{1}{2} \frac{g^f_{\rm R}}{g^f_{\rm L} g^f_{\rm R}}$
- total decay rate $\Gamma_{\rm Z} = C \left((g_{\rm L}^f)^2 + (g_{\rm R}^f)^2) \right)$
- Mass of W boson, muon decay rate $\Gamma_{\mu} \propto 1/M_{\rm M}^4$

$$1~\mu \propto 1/M_{
m W}$$

• $R_{\rm b}$, $R_{\rm c}$, $R_{\rm l}$, $\sigma_{\rm had}^0$, ...

Precision measurements

	W mass [GeV]	$\sin heta_{ m W, eff}^{ m lept}$
now	80.410 ± 0.032	0.23153 ± 0.00016
Tevatron	± 0.027	± 0.00016
LHC	± 0.015	± 0.00015
ILC/GigaZ	± 0.007	±0.00013

International Linear Collider (2015?)

Tevatron

Large Hadron-Collider (\gtrsim 2007)

1980's

Observable	W mass	$\sin heta_{ m VV,eff}^{ m lept}$	Z width
α	\checkmark	\checkmark	\checkmark

Sirlin, Marciano '80 G. Degrassi, A. Sirlin '93 P. Gambino, A. Sirlin '94

1991

Observable	W mass	$\sin heta_{ m VV,eff}^{ m lept}$	Z width
α	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{s}$	\checkmark	\checkmark	\checkmark

Djouadi '88 Halzen, Kniehl '91

1995

Observable	W mass	$\sin heta_{ m W, eff}^{ m lept}$	Z width
α	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{s}$	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{\rm S}^2$	\checkmark	\checkmark	\checkmark

Avdeev et al. '94 Chetyrkin, Kühn, Steinhauser '95

1998

Observable	W mass	sin $ heta_{W,eff}^{lept}$	Z width
α	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{s}$	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{s}^{2}$	\checkmark	\checkmark	\checkmark
$lpha^2 m_{ m t}^4$, $lpha^2 m_{ m t}^2$	\checkmark	\checkmark	\checkmark

R. Barbieri et al. '93 J. Fleischer, O.V. Tarasov, F. Jegerlehner '95 Degrassi, Gambino, Vicini '96 Degrassi, Gambino, Sirlin '97,98

2003

Observable	W mass	$\sin heta_{ m VV,eff}^{ m lept}$	Z width
lpha	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{S}$	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{s}^{2}$	\checkmark	\checkmark	\checkmark
$lpha^2 m_{ m t}^4$, $lpha^2 m_{ m t}^2$	\checkmark	\checkmark	\checkmark
$lpha^3 m_{ m t}^6$, $lpha^2 lpha_{ m s} m_{ m t}^4$	\checkmark	\checkmark	\checkmark

v.d.Bij, Chetyrkin, Faisst, Jikia, Seidensticker '01 Faisst, Kühn, Seidensticker, Veretin '03

2006

Observable	W mass	$\sin heta_{ m VV,eff}^{ m lept}$	Z width
α	\checkmark	\checkmark	\checkmark
$lpha lpha_{\sf S}$	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{s}^{2}$	\checkmark	\checkmark	\checkmark
$lpha^2 m_{ m t}^4$, $lpha^2 m_{ m t}^2$	\checkmark	\checkmark	\checkmark
$lpha^3 m_{ m t}^6$, $lpha^2 lpha_{ m s} m_{ m t}^4$	\checkmark	\checkmark	\checkmark
α^2	\checkmark	\checkmark	

Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon '02 Onishchenko, Veretin '02 Awramik, Czakon, Freitas '04,06 Meier, Hollik, Uccirati '05,06

2006

Observable	W mass	$\sin heta_{ m W, eff}^{ m lept}$	Z width
α	\checkmark	\checkmark	\checkmark
$lpha lpha_{\sf S}$	\checkmark	\checkmark	\checkmark
$\alpha \alpha_{s}^{2}$	\checkmark	\checkmark	\checkmark
$lpha^2 m_{ m t}^4$, $lpha^2 m_{ m t}^2$	\checkmark	\checkmark	\checkmark
$lpha^3 m_{ m t}^6$, $lpha^2 lpha_{ m s} m_{ m t}^4$	\checkmark	\checkmark	\checkmark
α^2	\checkmark	\checkmark	
$lpha lpha_{ m S}^3 m_{ m t}^2$, $lpha^3 M_{ m H}^4$	\checkmark	\checkmark	\checkmark

Boughezal, Tausk, v.d.Bij '05 Schröder, Steinhauser '05 Chetyrkin, Faisst, Kühn '06

Radiative loop corrections

	M_{W} [GeV]	sin	$ heta_{W,eff}^{lept}$
now	± 0.032	±	16
Tevatron	± 0.027	土	16
LHC	±0.015	土	15
ILC/GigaZ	± 0.007	土	1.3
1-loop	± 0.450	4 ± 1	.000
2-/3-loop QCD	± 0.070	土	45
ferm. 2-loop E\	$\mathcal{N} \pm 0.050$	土	90
bos. 2-loop EW	$/ \pm 0.002$	土	1
leading 3-loop	±0.005	土	25

Experimental precision sensitive to 2-/3-loop effects

Marciano, Sirlin '80
Djouadi et al. '88 Chetyrkin, Kühn, Steinhauser '95
Freitas et al. '00 Awramik, Czakon '03 Awramik, Czakon, Freitas, Weiglein '04
Awramik, Czakon, Freitas '06

Faisst, Kühn, Seidensticker, Veretin '03

Two-loop techniques

• **On-shell** renormalization of (*W* and *Z*) masses:

Masses correspond to propagator poles

Selfenergy corrections for mass renormalization

• Complication for corrections to $\sin^2 \theta_{eff}^{lept}$: Two-loop vertex diagrams

- Divide into two classes
 - With closed fermion loops
 - No closed fermion loops

Diagrams: Asymptotic expansions

Top quark contributions

 Exploit large scale difference between top mass and other masses:

 $M_{\rm Z}^2/m_{\rm t}^2 pprox 1/4$

- Simplifies diagrams to 2-loop tadpoles and 1-loop vertices
- Fast numerical evaluation
- Previously: leading $\alpha m_{\rm t}^4$ and $\alpha^2 m_{\rm t}^2$ contribution only

G. Degrassi, P. Gambino, A. Sirlin '97

Diagrams, asymptotic expansions _____

- Leading terms in agreement with previous result Degrassi, Gambino, Sirlin '97
- Expansion in ext. momentum as check

Total contribution of top-quark diagrams:

10th order expansion has relative error estimate: $\pm 1.3 \times 10^{-5}$

Bosonic corrections to $\sin^2 \theta_{eff}^{lept}$

Three scales M_Z , M_W , M_H

• Reduce number of scales by expansions and re-expansions

 \rightarrow Number of integrals increases to several 10,000

 Reduction to master integrals possible for sets of one- and two-scale integrals

• Expansion methods:

• Expansion in
$$s_{\rm w}^2 = \frac{M_{\rm Z} - M_{\rm W}}{M_{\rm Z}} \sim 1/4$$

- Threshold expansion (diagrams with Z and W or Higgs boson) \rightarrow Method of regions
- Large mass expansion (diagrams with Higgs boson)

Diagrams: Algebraic reduction

For example light fermion contributions

Take light fermions (all except top quark) massless \rightarrow Only two scales M_{W} and M_{Z}

Integration-by-parts and Lorentz-invariance identities to reduce to master integrals Chetyrkin, Tkachov '81 Gehrmann, Remiddi '00 Laporta '00

 \rightarrow Symmetry relations to minimize number of independent integrals

Linear equation system with $\mathcal{O}(10^4)$ entries

 \rightarrow Specialized computer tools, e.g. *IdSolver*

Czakon '04

Scalar integrals: Semi-numerical integral evaluation

Topologies with **self-energy sub-loop** can easily be integrated by using dispersion relation for B_0 function: S. Bauberger et al. '95

$$B_0(p^2, m_1^2, m_2^2) = -\int_{(m_1+m_2)^2}^{\infty} \mathrm{d}s \frac{\Delta B_0(s, m_1^2, m_2^2)}{s - p^2}$$

with
$$\Delta B_0(s, m_1^2, m_2^2) = (4\pi\mu^2)^{4-D} \frac{\Gamma(D/2 - 1)}{\Gamma(D - 2)} \frac{\lambda^{(D-3)/2}(s, m_1^2, m_2^2)}{s^{D/2 - 1}},$$

 $\lambda(a, b, c) = (a - b - c)^2 - 4bc$

Scalar integrals, numerical integration _

Dispersion relations for diagrams with triangle subloop difficult

 \rightarrow Alternative: Use Feynman parameters J. v.d.Bij, A. Ghinculov '94

$$\frac{1}{(q+p_1)^2 - m_1^2} \frac{1}{(q+p_2)^2 - m_2^2} = \int_0^1 dx \frac{1}{[(q+\bar{p})^2 - \bar{m}^2]^2}$$

$$\bar{p} = x p_1 + (1-x)p_2, \qquad \overline{m} = x m_1 + (1-x)m_2 - x(1-x)(p_1 - p_2)^2$$

Reduces triangle to self-energy sub-loops:

Integration over Feynman parameters and dispersion integral numerically with Gauss-Kronrod algorithm

Scalar integrals: Other methods

• Differential equations to get analytical results for master integrals

- Analytical results through Mellin-Barnes representations (for one-scale master integrals)
 Czakon '05
- Sector decomposition (poor precision, but good for checks)
 T. Binoth, G. Heinrich '03
- Taylor expansions (in some cases)

Fermion loop triangle and treatment of γ_5

- Well-known problem in chiral quantum field theories: Non-existence of invariant regularization
- Dimensional regularization (DREG) preserves Lorentz- and gauge symmetries in non-chiral theories

In chiral theories:

$$\{\gamma_{\mu}, \gamma_{5}\}, \qquad \operatorname{Tr}(\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}\gamma^{\delta}\gamma_{5}) = 4i \,\epsilon^{\alpha\beta\gamma\delta}$$

cannot be simultaneously fulfilled in $D \neq 4$ dimensions

- Experience from muon decay:
 - Terms arising from $Tr(\gamma^{\alpha}\gamma^{\beta}\gamma^{\gamma}\gamma^{\delta}\gamma_5) = 4i \epsilon^{\alpha\beta\gamma\delta}$ are **UV-finite** \rightarrow Succesful use of 4-dim. Dirac algebra !

Generates inconsistencies at $\mathcal{O}(D-4)$

• Contribution involving ϵ -tensors solely from top-quark diagrams

- Situation complicated by collinear divergencies
- Collinear divergencies cancel in complete result, but are present in single diagrams
- With inconsistent treatment of γ₅:
 Only leading collinear poles cancel, but sub-leading divergencies and finite parts come out wrong
- Simplest solution: use photon mass as regulator
- IR divergence from anomaly cancels with one quark and lepton family

 $M_{\rm W,exp} = (80.404 \pm 0.030) \,\,{\rm GeV}$

Computation from muon decay in Standard Model:

• complete 2-loop

Freitas, Hollik, Walter, Weiglein '00 Awramik, Czakon, Onishchenko, Veretin '02

• partial 3-loop, using expansion for large $m_{\rm t}$ Faisst et al. '03 Boughezal, Tausk, v.d.Bij '05

Estimated theoretical error: $\delta M_{\rm W,th} \approx \pm 0.004 \text{ GeV}$ Impact of 2-loop corrections: $\delta M_{\rm W,2-loop} \approx 0.03 \text{ GeV}$

Effective weak mixing angle

 $\sin^2 \theta_{\rm eff}^{\rm lept}$ is one of the most important quantities for testing the Standard Mode I and constraining $M_{\rm H}$.

Measurement from

- left-right asymmetry (SLD)
- forward-backw. asymmetry (LEP+SLD)
- on ${\boldsymbol{Z}}$ resonance
- \rightarrow experimentally very clean

Final result for $\sin^2 \theta_{\text{eff}}^{\text{lept}}$ uses G_{μ} as input The \rightarrow include corrections to M_{W} δ_{th} s

input Theoretical error: $\delta_{th} \sin^2 \theta_{eff}^{lept} \approx 4.7 \times 10^{-5}$ Comparison to previous result with large- m_t expansion up to $O(\alpha^2 m_t^2)$ G. Degrassi, P. Gambino, A. Sirlin '97 G. Degrassi, P. Gambino, M. Passera, A. Sirlin '98

M_H	$\left(\Delta \sin^2 \theta_{\rm eff}^{\rm lept}\right)_{\rm DGPS}$	$\left(\Delta \sin^2 \theta_{\text{eff}}^{\text{lept}}\right)_{\text{zfitter}}$
GeV	imes10 ⁻⁴	$\times 10^{-4}$
100	-0.45	-0.40
200	-0.69	-0.72
300	-0.85	-0.83
600	-1.17	-0.94
1000	-1.60	-1.28

Current experimental precision: $\sin^2 \theta_{eff}^{lept} = 0.23150 \pm 0.00016$

Conclusions and outlook

- Precision observables test the Standard Model, give information about the **Higgs boson**, and tell a story about **new physics**
- Experimental precision at future colliders (LHC and ILC) requires calcualtion of **two** and **three-loop** radiative corrections
- Complete electroweak 2-loop corrections to M_W and $\sin^2 \theta_{eff}^{lept}$ and some leading higher-order corrections are available
- New results incorporated into ZFITTER 6.42 and used in experimental fits

More to be done...

Backup slides

Proper definition of correction factors at two-loop

Define amplitude as expansion around complex pole:

$$\mathcal{A}(e^+e^- \to f\bar{f}) = \frac{R}{s - \mathcal{M}_Z^2} + S + (s - \mathcal{M}_Z^2)S' + \cdots$$
$$\mathcal{M}_Z^2 = M_Z^2 - iM_Z\Gamma_Z$$

Expanding up to $\mathcal{O}(\alpha^2)$ and using $\mathcal{O}(\Gamma_Z/M_Z) = \mathcal{O}(\alpha)$ one can identify the electroweak form factor κ_f

$$\sin^2 \theta_{\rm eff}^{\rm lept} = \Re e\{\kappa_l\} \left(1 - \frac{M_{\rm W}^2}{M_Z^2}\right) \qquad \qquad \kappa_f = \frac{1 - v_f/a_f}{1 - v_f^{(0)}/a_f^{(0)}}$$

where $\frac{v_f}{a_f}$ are the vector $Zf\bar{f}$ couplings [(0) = tree-level]

Definition of Z exchange amplitude consistent with usual programs for SM fits (e.g. ZFITTER)

But:

Treatment of $\gamma - Z$ interference in ZFITTER **not** consisten t with complex pole scheme at $\mathcal{O}(\alpha^2)$.

 \rightarrow Correction term for sin² θ_{eff}^{lept} (numerically small):

$$\sin^2 \theta_{\text{eff}}^{\text{lept}} = \Re e\{\kappa_l\} \left(1 - \frac{M_W^2}{M_Z^2}\right) - \frac{\Gamma_Z}{M_Z} \frac{G_{\gamma ll, \vee}^{(0)}}{a_e^{(0)}(a_l^{(0)} - v_l^{(0)})} \Im m\{G_{\gamma ll, a}^{(0)}\}$$

Two-loop contribution:

$$\kappa_l^{(2)} = \frac{a_l^{(2)} v_l^{(0)} a_l^{(0)} - v_l^{(2)} \left(a_l^{(0)}\right)^2 - \left(a_l^{(1)}\right)^2 v_l^{(0)} + a_l^{(1)} v_l^{(1)} a_l^{(0)}}{\left(a_l^{(0)}\right)^2 \left(a_l^{(0)} - v_l^{(0)}\right)} \bigg|_{s=M_Z^2}$$

 Interplay between 2-loop terms and products of 1-loop terms to cancel IR-divergencies

 Genuine 2-loop contributions contain products of imaginary parts of 1-loop terms

Error estimate

Implementation in **ZFITTER**

Result coded in ZFITTER 6.42 via the fit formula \rightarrow fast evaluation error estimate also incorporated

<u>Problem</u>: new result only available for leptonic Zl^+l^- vertex

 \rightarrow not usable for $Zb\overline{b}$ vertex, which contains internal massive top-quark propagators

until ZFITTER 6.40: Process $e^+e^- \rightarrow (Z) \rightarrow b\bar{b}$ computed without 2-loop corrections (not even partial 2-loop)

 \rightarrow mismatch because 2-loop corrections to initial state $Ze^+e^$ known and taken into account for other final states

correction in ZFITTER 6.42:

2-loop corrections to $\sin^2 \theta_{\text{lept}}^{\text{eff}}$ in Ze^+e^- vertex for $e^+e^- \to (Z) \to b\overline{b}$, but $Zb\overline{b}$ vertex still at 1-loop

- \rightarrow possible because initial and final state factorize on Z pole
- \rightarrow Shift in determination of pole asymmetry $A_{\text{FB}}^{0,b}$:
 - $\delta A_{\mathsf{FB}}^{0,b} = 0.0006$ (compare to experimental error: 0.0017)

Freitas, Mönig '04

Arbuzov, Awramik, Czakon, Freitas, Grünewald, Mönig, Riemann, Riemann '06

Outlook: 2-loop corrections for $\sin^2 \theta_q^{\text{eff}}$ for $b\overline{b}$ final states finished soon