# AVAILABILITY AND RELIABILITY OF CERN CRYOPLANTS

# L. Serio on behalf of the Cryogenics for Accelerator Group

Accelerator Technology Department CERN, Geneva, Switzerland





- Introduction
- Cryogenic systems layout
  - LHC Test String, LEP, LHC cryoplants
- Criticality analysis, maintenance and machine schedule
- Availability of cryoplants at CERN:
  - <u>R&D</u>: LHC Test String (tunnel cryogenics) performances
  - <u>Operation</u>: LEP cryogenic system performances
  - <u>Operation of future machines</u>: LHC refrigerators performances
- Present commissioning status of the cryogenic system of the LHC machine
- Overall availabilities and conclusions



#### Introduction

| EVENT                                                                  | TIME        |
|------------------------------------------------------------------------|-------------|
| LEP approved (cryo)                                                    | 1989        |
| LEP construction and installation of the cryogenic plants              | 1992 – 1993 |
| LEP commissioning of the cryogenic plants                              | 1993-1995   |
| LEP start of operation of cryogenic plants                             | 1993        |
| LEP upgrade                                                            | 1998        |
| LEP operation at full capacity                                         | 1999 - 2000 |
| LHC approved                                                           | 1994        |
| LHC Test String 1 commissioning (R&D and prototype validation)         | 1994-1999   |
| LHC Test String 2 commissioning (R&D and series equipement validation) | 2001-2003   |
| Cryoplants construction and installation (including distribution)      | 2001-2006   |
| Cryoplants commissioning                                               | 2002-2006   |
| LHC sectors test                                                       | 2006-2007   |
| LHC beam test (1 octant)                                               | End 2006    |
| LHC operation with beam                                                | End 2007    |





#### • Introduction

- Cryogenic systems layout
  - LHC Test String, LEP, LHC cryoplants
- Criticality analysis, maintenance and machine schedule
- Availability of cryoplants at CERN:
  - <u>R&D</u>: LHC Test String (tunnel cryogenics) performances
  - <u>Operation</u>: LEP cryogenic system performances
  - <u>Operation of future machines</u>: LHC refrigerators performances
- Present commissioning status of the cryogenic system of the LHC machine
- Overall availabilities and conclusions



# LEP cryogenic system layout



<sup>•</sup>LEP operation since 1989

•Installation of SC cavity modules and cryoplants from 1992

•Four 12/18 kW @ 4.5 K:

Storage tanks, compressor station, upper cold box (300-20 K)

Lower cold box and distribution lines (200-250 m)



# LHC cryogenic system layout 1/2



- 5 cryogenic islands
- 8 refrigerators
  - 2 at P4, 6 and 8,
  - 1 at P2
  - 1 at P1.8
- 1 refrigerator serves 1 sector (18 kW @ 4.5 K, 600 kW precooler)
- possibility to couple two refrigerators via the interconnection box → 2 refrigerators for 1 sector

# LHC cryogenic system layout 2/2



#### LHC Test String experimental test facility

Regular arc magnet test string and electrical feed box Cooling with a 6 kW refrigerator (ex-LEP) Pumping with warm and cold compressor system







- Introduction
- Cryogenic systems layout

   LHC Test String, LEP, LHC cryoplants
- Criticality analysis, maintenance and machine schedule
- Availability of cryoplants at CERN:
  - <u>R&D</u>: LHC Test String (tunnel cryogenics) performances
  - <u>Operation</u>: LEP cryogenic system performances
  - <u>Operation of future machines</u>: LHC refrigerators performances
- Present commissioning status of the cryogenic system of the LHC machine
- Overall availabilities and conclusions



Failures: "major or first order failures" –

"something that breaks or something that does not work as expected"

- Systems failures (refrigerator 4.5 K and 1.8 K, cryogenic interconnection box, cryogenic distribution line, electrical distribution box)
- Higher heat loads
- Missing or failing instrumentation
- > Impurities
- Loss of helium



#### Unlikely to occur during life-cycle, but possible!





### 4.5 K Refrigerators





L. Serio

### Failure of a rotating part

- Turbines: no spares at the moment, 10 h delay if spare available, otherwise degraded mode allows continuation of tests -> LN2 precooling
- Cold compressors: spares available, 10 hours delay, no degraded mode allowed
- Warm compressors: can use spare compressors capacity otherwise major SD or use of adjacent refrigerator
- Oil pumps -> redundancy
- From the cooling capacity point of view such failures would allow a degraded mode (spares, redundancy, adjacent refrigerator) but the operational constraints and the recovery time will increase



- Possible cause :
  - Degradation of insulation vacuum (leaks)
  - Loss of insulation vacuum
  - Faulty or badly installed components

• The cryogenic system should have sufficient spare capacity to cope with degraded mode or low intensity beam operation (until SD for intervention) apart of the loss of insulation vacuum that would provoke additional failures (e.g. loss of helium)



#### – Magnets temperature:

- Redundancy
- Other control options (opening valve characteristics, copy valve position of adjacent cells)
- Current leads temperature:
  - Redundancy
  - Other control options (valve characteristics against current)
- Level indicators:
  - Redundancy except for some standalone magnets (D2, D3)
  - Repair
- Valves:
  - In situ exchange (intervention of up to 1 week depending on valve position)



- Water => Dryers up to 50 ppm(v)
- Air => Switchable 80 K adsorbers
- H<sub>2</sub> => Single 20 K adsorber
- Solid => Cryo Interconnection boxes filters
  - There should be sufficient capacity to filter gaseous impurities, but ...
  - Solid impurities would be a problem as they will clog the interconnection box filter (line D) provoking a stop of the cooling flow
    - It would mainly happen during the cooldown and the first few quenches
    - It requires few days to replace or clean the filter and reach again nominal conditions



- Major losses due to long utilities stop (several hours):
  - Safety implications depending on location of losses (tunnel)
  - Delay in recovery the inventory from adjacent storage points (1 day) or market (few weeks) if helium not sufficient





### • Electricity:

- 3.3kV Powering of main compressors (stop)
- 400V Powering of heaters, pumps,... (Diesel back-up)
- 24V Instrumentation (relays, 500 mA) (UPS)
- 24V Control System & monitoring (4 20 mA) (UPS)
- Water:
  - Cooling of compressor station (motors, helium, oil), turbines, vacuum pumps... (stop)

# • Compressed Air:

Valves actuators (stop)

# • Controls :

- Networks: WFIP (only MB sensors redundant), Profibus (no redundancy -> stop for repair), Ethernet (stop)
- PLC (stop and repair), SCADA (can run blind until something happens -> would be wise to stop powering)



#### Utilities failure recovery performances

Cryogenics is a recovery time amplifier

**LEP contractual time recovery < 5.5 hours + 7\*stop duration** 

LHC estimated time recovery < 6 hours + 3\*stop duration





### Maintenance and machine schedule

- 1. Corrective maintenance during the operational periods
  - when required if critical
  - $\frac{1}{2}$  day every week for intervention
  - few days every month for MD runs
- 2. Preventive maintenance:
  - every winter shutdown on rotating machines, oil levels, filters, inspections, etc.
  - instrumentation and actuators calibration every two years
  - safety devices verification and validation every two years
- 3. Major overhaul of pumps (every 20'000 hours) and compressors (every 40'000 hours).
- 4. Spare parts: critical components are purchased using industrial methods for criticality analysis, ~2,2% cryoplant cost







- Introduction
- Cryogenic systems layout
  - LHC Test String, LEP, LHC cryoplants
- Criticality analysis, maintenance and machine schedule
- Availability of cryoplants at CERN:
  - <u>R&D</u>: LHC Test String (tunnel cryogenics) performances
  - <u>Operation</u>: LEP cryogenic system performances
  - <u>Operation of future machines</u>: LHC refrigerators performances
- Present commissioning status of the cryogenic system of the LHC machine
- Overall availabilities and conclusions



• Availability of cryoplants in operation is defined as:

hours – availability(CRYO – OK) hours – planned – operation

- Hours of availability = authorisation (cryo OK signal) for client powering or testing
- Hours of planned operation = production year shutdowns planned stops
- For process stops, e.g. magnet quench, the recovery time is not taken into account in the period of unavailability if within average recovery delay
- For operation and utilities stops, the recovery time is taken into account in the period of unavailability



#### **Availability of LHC Test String 1**



CERN

20000 hours of operation; almost 13000 hours at 1.9 K; 172 quench recoveries
15 complete thermal cycles; 3275 electrical cycles
2000 hours with magnets powered at or above 800 A (330 hours at 13 kA)

#### Availability of LHC Test String 2

1700 h at 1.9 K 20 quench recovered 98.8% cryo availability 4800 h at 1.9 K 17 quench recovered 96.2% cryo availability 1800 h at 1.9 K 5 quench recovered 98.7% cryo availability

MB2 MB3 MO2

MO1 MB1

MB5 MB6





#### LEP cryogenic system performances

**Cryogenics Operation for LEP2** 





### Availability of LHC refrigerators

#### TABLE 1. Statistics and availability of LHC refrigerators from 2002 to date.

|                               | Production [h] or status [C-commissioning, MO-Major Overhauling]<br>[performance in %] |                        |                        |                        |  |
|-------------------------------|----------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|--|
| LHC point/sector/refr.        | 2002                                                                                   | 2003                   | 2004                   | 2005                   |  |
| <b>Point 1.8</b> / 1-2 - new  | <b>6469</b><br>[98.9%]                                                                 | <b>5700</b><br>[99.4%] | <b>7620</b><br>[99.9%] | <b>7600</b><br>[99.7%] |  |
| <b>Point 2</b> / 2-3 – ex-LEP | Stand-by                                                                               | Stand-by               | MO, C                  | С                      |  |
| <b>Point 4</b> / 3-4 – ex-LEP | Stand-by                                                                               | Stand-by               | Stand-by               | МО                     |  |
| <b>Point 4</b> / 4-5 - new    | С                                                                                      | Stand-by               | С                      | С                      |  |
| <b>Point 6</b> / 5-6 - new    | Installation                                                                           | С                      | С                      | Stand-by               |  |
| <b>Point 6</b> / 6-7 – ex-LEP | Stand-by                                                                               | Stand-by               | Stand-by               | Stand-by               |  |
| <b>Point 8</b> / 7-8 – ex-LEP | Stand-by                                                                               | Stand-by               | МО                     | С                      |  |
| <b>Point 8</b> / 8-1 - new    | C<br>NA                                                                                | ~600<br>NA             | <b>1150</b><br>[99.1%] | <b>3000</b><br>[98.8%] |  |





#### Statistics and availability of CERN cryoplants

| cryoplant                         | Years of operation | # of<br>installations | Production<br>[h] | PERFORMANCE<br>IN [%] | Note                   |
|-----------------------------------|--------------------|-----------------------|-------------------|-----------------------|------------------------|
| LEP cryogenics                    | 1996-2000          | 4                     | 20'000            | 97.7 (95.7)           | Not including de-icing |
| LEP point individual refrigerator | 1996-2000          | 1                     | 30'000            | 98.9                  | Average                |
| LHC Test String 1                 | 1995-1999          | 1                     | 20'000            | 95                    | prototype              |
| LHC Test String 2                 | 2001-2003          | 1                     | 8'300             | 97.9                  | commissioning          |
| LHC cryogenics                    | 2007-              | 8                     | 6'000 /<br>year   | 98                    | estimate               |
| LHC point 1.8                     | 2002-2005          | 1                     | 27'400            | 99.5                  | Production / buffer    |
| LHC point 8                       | 2004-2005          | 1                     | 4'200             | 99.0                  | commissioning          |





- Introduction
- Cryogenic systems layout
  - LHC Test String, LEP, LHC cryoplants
- Criticality analysis, maintenance and machine schedule
- Availability of cryoplants at CERN:
  - <u>R&D</u>: LHC Test String (tunnel cryogenics) performances
  - <u>Operation</u>: LEP cryogenic system performances
  - <u>Operation of future machines</u>: LHC refrigerators performances
- Present commissioning status of the cryogenic system of the LHC machine
- Overall availabilities and conclusions



### **Present Cryogenics Overview**



- Cryoplants availability above 99 % can be obtained with preliminary criticality analysis, built-in redundancy and overcapacity, preventive maintenance
- Usually more than 2/3 of stops are due to utilities (electricity, control system, water, etc.)
- The cryogenic system is usually a recovery amplifier, redundancy, overcapacity and preventive maintenance are essential to reduce the downtime
- Fast recovery with automated procedures, round-the-clock operators monitoring and training are necessary to limit the downtime
- Based on LEP operation and sub-systems commissioning experiences, the expected overall availability of the LHC cryogenic system should reach ~ 98 % once the first commissioning with beam is completed
- Commissioning of the LHC is in full swing:
  - Sub-systems commissioning and validation Pt8 completed ; other points by the end 2006
  - Global validation of cryogenics production and distribution systems at Pt. 8– June 2006
  - Hardware commissioning of the two first full LHC sectors (Pt. 8) end 2006
  - Colliding beam end 2007

