Overview of SLAC Particle and Particle Astrophysics Program

Persis S. Drell

Deputy Director

Director, Particle and Particle Astrophysics

An Exciting Time in Particle Physics

- The Standard Model of quarks and leptons is fabulously successful
 - In only describes 5% of the Universe
- Dark Matter and Dark Energy make up 95% of the Universe
 - New forms of matter and energy outside of current understanding
- We don't understand why the Universe is matter dominated
- Compelling Questions confront us
 - Within this decade tools coming on line to make progress in our understanding
 - Developing tools for discovery in the next decade

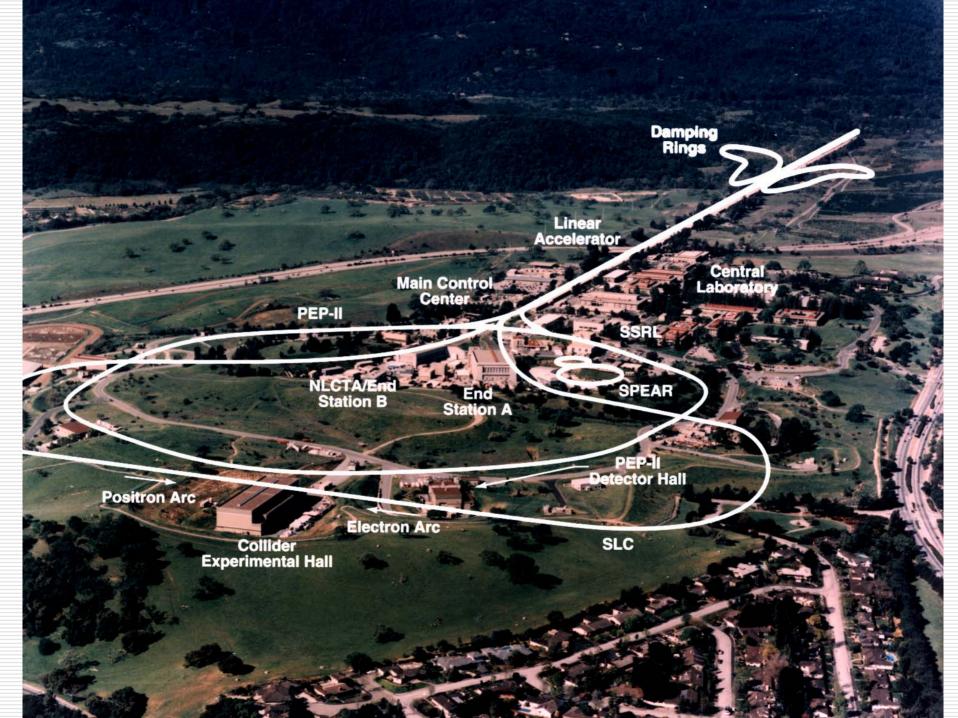
A Challenging Time in Particle Physics

- Premier US HEP accelerators will turn off by the end of the decade
 - Tevatron (FNAL) 2009
 - B-Factory (SLAC) 2008
 - CESR (Cornell) 2008
- By end of decade, the frontiers of HEP may be off shore
 - LHC (CERN)
 - JPark (KEK)
 - KEK-B (KEK)
- Long term health and future of the field of HEP relies on ILC
 - Very expensive (~\$8B)
 - Excellent progress towards international realization of such a machine
 - Not a certainty!

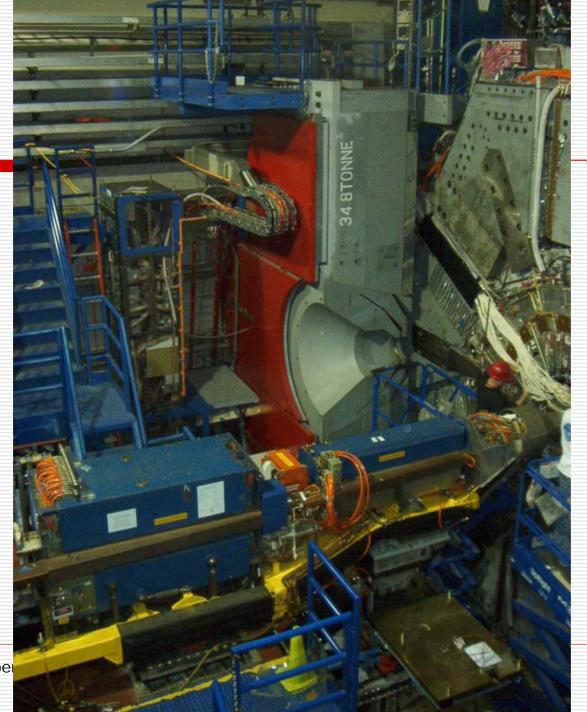
SLAC's Leadership Role in these Uncertain Times

- ☐ SLAC's HEP mission:
 - responsibility and an obligation to provide technical and scientific leadership to the national (and international community)
 - provide unique technical capabilities for the management and construction of large-scale projects
 - build and operate the accelerators that define the frontiers of the field
 - enable members of the University community to play leadership roles in the HEP program and have full access to the physics
 - participate in the education of a scientifically trained workforce, and in the training of the future leaders in the field
- Challenge:
 - carry out mission at a time when major changes from past way of doing business
 - No onsite frontier HEP machine
 - carry out mission at time when future options uncertain

Focus of Current and Future SLAC Scientific Program

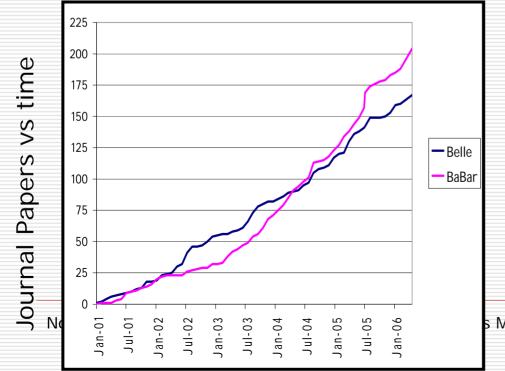

- □ SLAC HEP program is addressing compelling scientific questions facing the field
 - ♦ Where did the antimatter go? (B-Factory)
 - Are there new symmetries and forces of nature? (B-Factory, ILC)
 - ♦ Why are there so many particles? (B-Factory)
 - What is Dark Matter? How can we make it in the lab? (LSST, JDEM, GLAST, ILC)
 - Can we solve the mystery of Dark Energy? (LSST, JDEM, ILC)
 - Is there grand unification of particles and forces? (ILC, EXO)
 - What are neutrinos telling us? (EXO)
 - ♦ Are there extra dimensions of space? (ILC)
- SLAC HEP program is extremely broad

Particle Physics: Flavor Physics

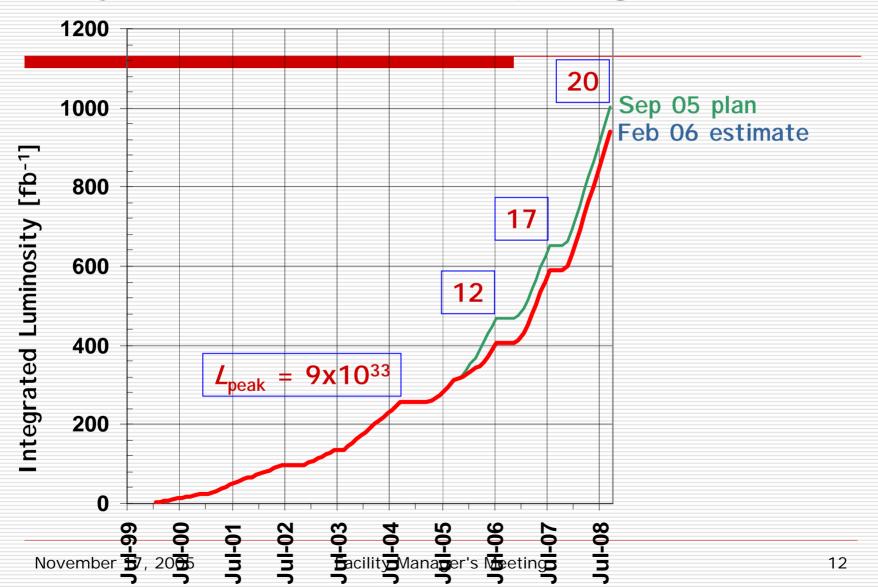

□BaBar

B-Factory Program

- PEP-II Accelerator
 - Collides e+ and e- with unequal beam energies at E_{CM}=10.58 GeV
 - Premier tool for studying physics of heavy flavor
- BaBar Detector
 - Optimized for B-physics at asymmetric energy collider
 - Run by International Collaboration of ~623 physicists from 80 institutions in 11 countries
- B-factory program operates until end of FY2008
 - Data analysis continues for several more years after data taking stops



B-Factory Physics Performance


- SLAC B Factory continues to be tremendously productive
 - Babar produces, on average, one, high-quality journal publication per week. Many of these are "first-ever" measurements

By any metric, Babar's productivity is outstanding; but it is especially impressive as measured by physics/fb-1

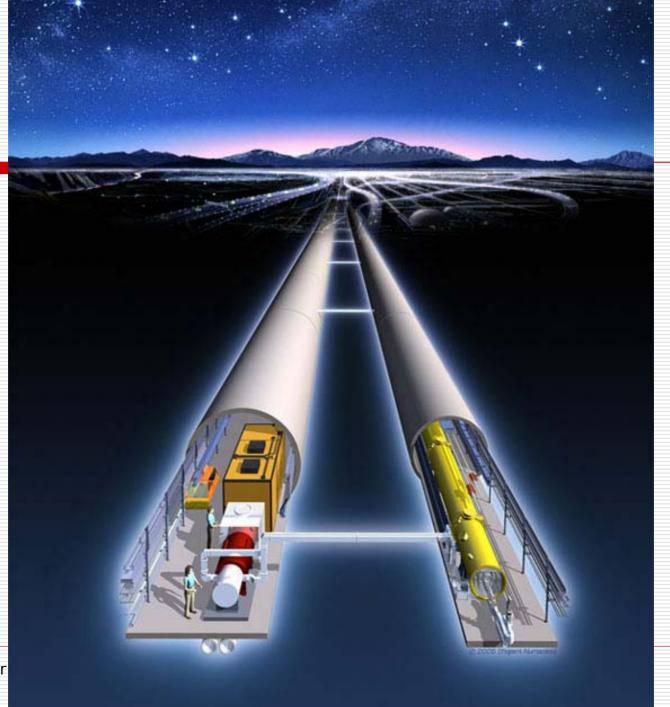
Journal Papers	BABAR	Belle
<2003	32	54
2003	39	28
2004	52	35
2005	60	36
2006	22	15
Total	205	168

Projected data sample growth

B-Factory Science Program

- B-Factory science drivers:
 - What happened to the antimatter?
 - □ B mesons a laboratory for study of CP violation
 - Discovery measurement in 2001
 - CP in charmonium (b→c) modes now measured to +-7%
 - Quark mixing by weak interactions not the whole story
 - Are there new symmetries/forces of nature?
 - Unique access to flavor sector of 'new physics'
 - CP in b→sss modes provides crucial testing ground for SUSY
 - Intriguing discrepancy!
 - Can we determine the pattern and properties of the quarks and leptons?
 - \Box e+e- b factories are also τ and charm factories
 - Surprises: new charm strange quark states

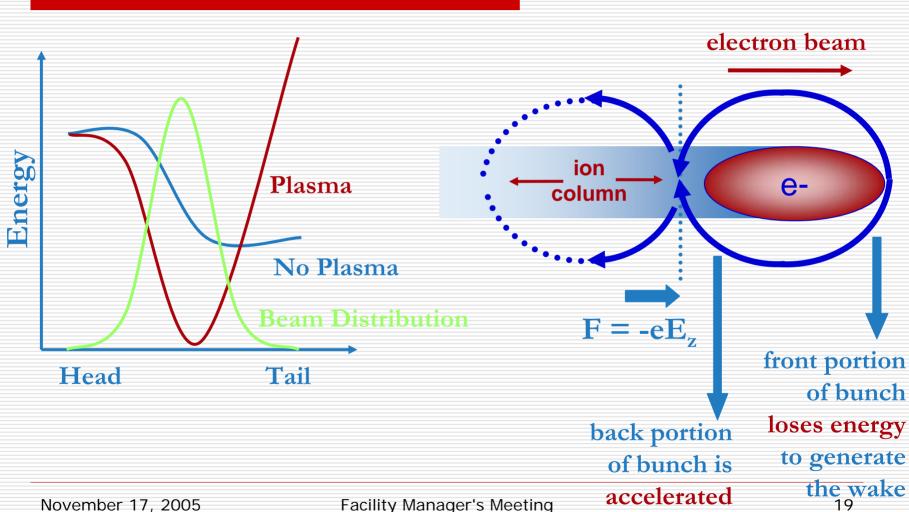
Particle Physics: High Energy Frontier


- □Linear Collider
- ■Advanced Accelerator R&D

The Linear Collider

- □ Linear Collider Science Drivers
 - Are there new symmetries and forces of nature?
 - ♦ What is Dark Matter? How can we make it in the lab?
 - Can we solve the mystery of Dark Energy?
 - ♦ Is there grand unification of particles and forces?
 - Are there extra dimensions of space?
- Linear collider essential to establish quantum nature of the 'dark universe'
 - Active work to articulate science case more broadly

Strategic Look at Linear Collider


- High Energy e+e- LC highest priority new machine for world community
 - Two 20 km long linacs
 - □ Accelerating e+ and e- to collisions
 - Energy of 500-1000 GeV CM
 - Price tag ~ \$8B
- SLAC has led the world in the design and development of the ILC
 - We will be major players, where ever in the world it is built
 - We very much hope it will be built in the US

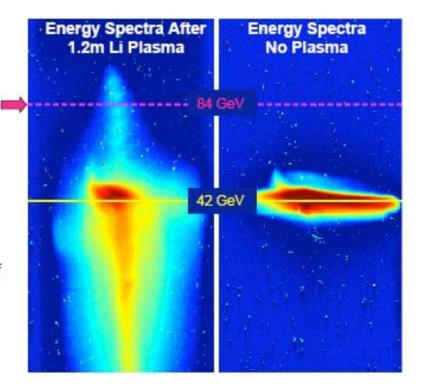
Advanced Accelerator R&D

- Preparing for challenges of longer term future fo field
- Explore underlying physics
 - Theoretical efforts in many areas supporting current experiments and aimed at longer term future
 - Beam Dynamics
 - Collective Effects
 - Accelerator Structures
- Proof of principle experiments
- Unique facilities for Accelerator R&D here at SLAC
 - FFTB→ Saber
 - NLCTA
 - ASTA
 - Klystron Test Lab
 - End Station A

Plasma Acceleration

E-167: Energy Doubling with a Plasma Wakefield Accelerator in the FFTB

At the last SPC Meeting 6 months ago:


Set the ambitious goal of doubling the energy of some of the 28.5 GeV electrons...

- Earlier experiments by same collaboration demonstrated > 30GeV/m over 30cm
- Late 2005 realized modifications to beam line would allow longer plasma & energy doubling
- Started on new 1.2 meter plasma source in December 2005
- Beam line modifications in February 2006

Final Run in FFTB April 2006:

Particle Energies > 84GeV Routinely Observed!

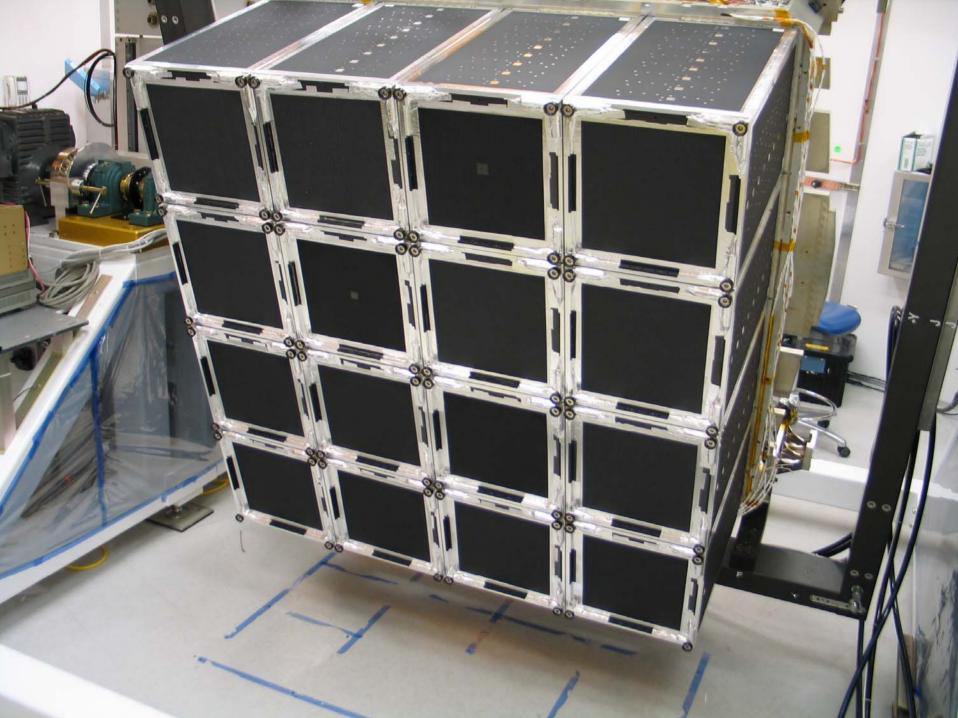
- Linac Running All-out To Deliver Compressed 42GeV Electron Bunches to the Plasma
- Record Energy Gain
- Significant Advance in Demonstrating Potential of Plasma Accelerators

Particle Astrophysics and Cosmology

□GLAST

□KIPAC: Kavli Institute for Particle Astrophysics and Cosmology

Particle Astrophysics and Cosmology at SLAC


- SLAC's HEP mission has broadened to include particle astrophysics and cosmology
 - Science Drivers for Particle Astrophysics program
 - Understanding the "Quantum Universe"
 - ♦ What is Dark Matter? How can we make it in the lab?
 - Can we solve the mystery of Dark Energy?
- Look for opportunities where SLAC plays unique and enabling role
 - Any participation where SLAC resources are involved, the level and scope of participation should be significant and commensurate with status as a national laboratory

GLAST

- GLAST: γ-ray Large Area Space Telescope
 - GLAST measures direction, energy and time of celestial gamma rays from 20MeV – 300 GeV
 - Will Survey entire sky every 3 hours
 - □ A direct view into Nature's largest accelerators
 - ☐ Gamma rays probe cosmological distances in a largely unexplored energy range
 - Great potential for Discoveries:
 - Dark Matter Searches
 - Endpoints of Stellar Evolution: Black Holes, Neutron Stars, Sne remnants
 - Active Galactic Nuclei and Gamma Ray Bursts
 - Joint Particle Physics/Particle Astrophysics venture
 - ☐ Involves 5 nations, 9 funding agencies
- □ Launch August 2007

LAT Instrument

LAT Mounted on Shipping Container Friday Morning

KIPAC: Kavli Institute for Particle Astrophysics and Cosmology

- Institute of Stanford University
 - Institute building on the SLAC site funding by gift from Fred Kavli
- Director reports to Stanford Dean of Research
 - 9 new faculty (4 in place)
 - Establishes Stanford/SLAC/DOE as intellectual force in field
- Institute brings in funds from NASA and NSF in addition to DOE funds through SLAC
 - Highly leveraged by > \$20M investment by Stanford University
- Growing fast!
 - Institute 100 strong and growing
 - □ > 20 new people
 - Others from existing SLAC and SU communities

KIPAC: Kavli Institute for Particle Astrophysics and Cosmology

Particle Astrophysics and Cosmology: The Future

- Potential SLAC/KIPAC Projects
 - SNAP Collaboration (JDEM)
 - □ 2m telescope, 0.7 sq deg field in space
 - Study high z SNe → Dark Energy
 - Weak Gravitational lensing → Dark Matter
 - Strong Lensing → Small scale structure
 - LSST
 - 8.4 m telescope, 8.6 sq deg field on the ground
 - Weak lensing survey of entire sky → Dark matter power density spectrum→ Constraints on Dark Energy
- Many other NASA funded KIPAC Projects under discussion (Exist, Next, POGO, ...)
- □ KIPAC effort already very visible and very productive
 - Over 100 publications in first 18 months...
 - 3 major conferences

The Future Program

Program Timelines: Exploiting the present and preparing for the future

- Science now or soon
 - BaBar (running now to 2008)
 - GLAST (2007 2012/17)
 - Proof of principle experiments in accelerator research
- □ R&D for near term science (2012)
 - Ground Based Dark Energy: LSST (first light 2012??)
 - Neutrinoless Double Beta Decay: EXO (2012?? if R&D successful)
 - Space Based Dark Energy: JDEM (20??)
 - ILC (2016?)
- R&D for farther future
 - Accelerator Research

Programmatic Priorities

- For the near term:
 - We must focus on B-factory performance and delivery of science to our largest user community
- ☐ For the mid term:
 - We must continue in our leadership role for the ILC
 - ☐ Highest priority new facility for the world community
 - We must complete GLAST construction and develop the ISOC to enable science for the collaboration
 - We must work to provide additional opportunities for science to the HEP and SLAC user community in ~2012
 - □ e.g. LSST, EXO, JDEM, new accelerator based initiatives....
- ☐ For the long term:
 - The R&D in accelerator science is our hope for the future of the field
 - To make the next accelerator *after* the ILC technically feasible and affordable

Programmatic Challenges

- Active workforce management needed
 - as transition from on site to off site accelerators
 - as non accelerator fraction of program grows
- ☐ ILC needs increased funding and continued government and community continuity of commitment
- To grow non accelerator programs will need to establish and execute a stable multi-agency research investment plan
- Must capitalize on spectacular KIPAC opportunity

Summary

- PPA in time of transition
 - Changes from past
 - Exciting opportunities for the future but also significant uncertainty
- □ SLAC's HEP programs and leadership central to national and international effort
- Working with community and agencies to develop balanced, forward looking, science driven programs