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Abstract 
We formulate a quantum linear theory of the N-particle 

free-electron laser Hamiltonian model, quantizing both 
the radiation field and the electron motion, in the steady 
state regime. Quantum effects such as frequency shift, 
line narrowing,  quantum limitation for bunching and 
energy spread and minimum uncertainty states are 
described. Using a second quantization formalism we 
demonstrate quantum entanglement between the recoiling 
electrons and the radiation field.  

INTRODUCTION  
Previous treatments [1-3] do not describe correctly the 

quantum FEL exponential regime because they define 
particles collective operators without the necessary 
symmetrization. In this paper we quantize both the 
electron motion and the radiation field in the steady state 
linear regime. Propagation and non linear effects 
quantizing only the electron motion have been described 
elsewhere [4].  The quantum behavior is ruled by a 
“quantum FEL parameter”, ρ  [1-3], which represents the 
ratio between the classical momentum spread and the 
one-photon recoil momentum. The classical limit is 
recovered only when this parameter is much larger than 
one. On the contrary, when 1ρ ≤ , one has a shift of the 
resonant frequency and a narrowing of the gain 
bandwidth. We show the existence of a general 
uncertainty principle relating momentum spread and 
bunching, which implies that the maximum bunching is 
limited by energy spread. We define a minimum 
uncertainty state, which, for small fluctuations, reduces to 
a gaussian packet. Finally, the multi-particle approach is 
compared with a second-quantized approach in which the 
particles are described in terms of momentum states 
occupation operators. Photon statistics and quantum 
entanglement in an FEL, starting from vacuum 
fluctuations, are presented.    

HAMILTONIAN MODEL 
We start from the FEL Hamiltonian for N electrons 

interacting with a single mode of radiation [1-3]: 
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where ( )j w jk k z ck zθ δ= + − −  and ( ) /j j op mc γ γ= −  

( )wk k+h  are position and momentum operators of the j-th 

electron, with ,i j ijp iθ δ⎡ ⎤ =⎣ ⎦ , a  is the annihilation 

operator of the radiation field, with , 1a a+ =⎡ ⎤⎣ ⎦ , 

/g Nρ= , 0( / )mc kρ ρ γ= h  and ρ are, respectively, 
the quantum [1,3] and classical [5] FEL parameters, 

/ gz z L= , / 4g wL λ πρ=  is the gain length and 

0 0( ) /( )rδ γ γ ργ= −  is the detuning. We observe that the 
dynamics depends on the single parameter ρ . From 
Hamiltonian (1) we derive the following Heisenberg 
evolution equations: 
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A constant of motion, which represents the total 

momentum in dimensionless units, is given by 
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Let us introduce the following electron collective 
operators 
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where B is the bunching and P is the symmetrized 
momentum bunching. This symmetrization is 
fundamental whenever one is dealing with non 
commuting operators, i.e., ,j ji i

i jie p eθ θδ− −⎡ ⎤ =⎣ ⎦ .  

We consider a , jp  and ji

j
e θ−∑ as fluctuation 

operators, i.e. the initial states for the electrons and the 
field such that 

0 0 0
0ji

j
j

a p e θ−= = =∑  . 

Writing the Heisenberg equation of motion and neglecting 

the high-order quantities ( )1 ji
j j

j
p e p

N
θ−∑  and 

21 ji

j
a e

N
θ−+ ∑ ,  we obtain the following equations for the 

linear regime: 
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The quantum correction to the classical description [5] 
is given by the term / 4iB ρ−  in the equation for P . 
Looking for solutions of the linear system (5) of the form 

0( ) exp( )B z i z Bλ= , we obtain the cubic characteristic 
equation 
 

( ) 2 2 1 0( 1/4 )λ δ λ ρ− + =−   (6) 

 
Notice that this dispersion relation coincides with that of a 
classical FEL with an initial energy spread with a square 
distribution and width 1/ ρ  i.e., this extra term represents 
the intrinsic quantum momentum spread which, in 
dimensional units, becomes kh . In [2,3] the linear 
approximation has been carried out without properly 
symmetrizing the momentum bunching operator, defined 
in (4). In fact, in [2] the momentum bunching is defined 
as  2 (1 / ) ji

jj
P N e pθ−= ∑ . In the linear 

approximation the authors neglect the high-order term 
2ji
jj

e pθ−∑ , leading to the equation 2 /dP dz a= −  and 

to the classical cubic [5] equation ( )2 1 0λ λ δ− + = , 
which can be obtained from Eq. (6) in the limit 1ρ >> . 
In [3] the authors define the momentum bunching as 

3 (1 / ) ji
jj

P N p e θ−= ∑  without symmetrizing. 

Neglecting the high-order term 2 ji
j

j
p e θ−∑ , they obtain 

the following cubic equation (see Eq.(27) in [3]):  
 

3 2 2 2( ) ( / 4) 1 / 4 0q q q qλ δ λ δ λ δ− + + + + − =  (7) 
 
where 1/q ρ= . However, defining ' / 2qλ λ= −  and 

' / 2qδ δ= −  , Eq.(7) becomes formally identical to the 

usual classical cubic [4] ( )' 2 ' ' 1 0λ λ δ− + = ,  just 
redefining the detuning. As a consequence, the analysis of 
the quantum corrections discussed in [3], in which the 
resonance is assumed for 0δ = , instead of 

/ 2 1/ 2qδ ρ= = , is not correct. As a matter of fact the 
cubic equation which describes correctly the quantum 
behavior is not given by Eq.(7), but by Eq.(6), which has 
been obtained using the correct symmetrization of the 
collective operator, as given by Eq.(4). The features of the 
solution of the cubic equation (6) is shown in Fig.1.   

When 1ρ ≤  (Fig. 1b-f), the instability rate decreases 
and the peak of  Imλ  , i.e., the resonance, occurs around 

1/ 2δ ρ=  with peak value Im λ ρ=  and full width on 

δ  equal to 4 ρ . Note that the field and the bunching 

grow exponentially as 'exp( ) exp( / )gz z Lρ = , 

where ' / / 4g g wL L ρ λ πρ ρ= =  is the quantum gain 
length. 
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Figure 1: Imaginary part of the complex root of the cubic 
equation (6) vs. δ  for 1/ 2ρ equal to 0 (a), 0.5 (b), 3 (c), 
5 (d), 7 (e) and 10 (f). 

Hence, in the quantum regime 1ρ <<  the resonance 
frequency shifts to positive values as 1/ 2ρ , the gain 
length increases and the gain bandwidth narrows as the 
square root of the quantum FEL parameter ρ . On the 
contrary, if one uses the cubic (7) of [3], one would obtain 
Fig.1a with the correct shift of the resonance to the right 
but all the other properties of the quantum solution are 
missing.  

UNCERTAINTY RELATIONS  
We now derive, from first principles, very general 

limitations for bunching and energy spread. The phase 
operator θ, defined in the (0,2π) space, and the 
canonically conjugate momentum /p i θ= − ∂ ∂ , satisfy 
the commutation rule [ ], p iθ = . These two variables can 
be interpreted also as azimuthal angle about the z axis and 
z-component of the orbital momentum  zL p= , so that 
the momentum p (in units of kh ) has discrete eigenvalues 

,..,n = −∞ ∞  and normalized eigenfunctions 
(1/ 2 ) exp( )inπ θ .  As it is well known [6], assuming 
these discrete eigenstates, one cannot conclude that the 
commutation rule implies the uncertainty relation 

1/ 2pθΔ Δ ≥ . However, other uncertainty relations can be 
obtained using the periodic operators  cosθ  and sinθ , 
with commutation rules with p: 
[ ] [ ]sin , cos ;  cos , sinp i p iθ θ θ θ= = − . Therefore, from 
the general uncertainty relations, one can deduce the 
following inequalities [6]: 
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which can be combined in the single symmetrical 
relation: 
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Defining the bunching cos sinib e iθ θ θ−= = − ,  Eq. 

(8) provides the following uncertainty relation between 
the momentum spread pΔ (in units of k) and the 
bunching: 
 

( ) 2| | / 2 (1 | | )p b bΔ ≥ −   (10) 

 
which  can be written also as: 
 

2| | / 1 / 4b p p≤ Δ Δ + . (11) 

 
This relation, derived from first principles, has an 
important physical consequence: it states that it is not 
possible to have large bunching without momentum 
spread, i.e. if |b| tends to unity, then the momentum 
spread becomes infinite. Conversely, if the momentum 
spread tends to zero, then the bunching is also zero. The 
first statement is with some respect intuitive, whereas the 
second one is quite surprising and it is a consequence of 
the Heisenberg uncertainty principle of Quantum 
Mechanics.  Relation (11) set an upper limit to the 
maximum bunching obtainable in FELs, and states  that 
|b| can be near unity only when 1/ 2pΔ >> , i.e. when the 
momentum spread is much larger than ћk.   In the case in 
which one can assume 1θΔ << , one has 2 2| | 1 ( )b θ≈ − Δ  
and the relation (10) reduces to the usual Heisenberg 
uncertainty principle (1/ 2)pθΔ Δ ≥ . 

It has been shown [7,8] that for 1ρ ≤  the electrons, 
initially in the momentum state 0p = , can  populate only 
the lower momentum state 1p = − , recoiling backward by 

kh when a photon is emitted. In this quantum regime the 
Hilbert space is spanned by only two eigenstates of the 
discrete momentum, separated by ћk. Calling P1 and P2 
the probability to be in the state with 0n =  or 1n = −  
(with P1+P2=1) it is easy to show that the momentum 
spread in units of ћk is ( )2

1 1(1 )p P PΔ = − . Hence, the 
maximum spread occurs for P1=1/2= P2 and 0.5pΔ = , 
and, using Eq. (11), it results that the maximum bunching 
must be limited by 1/ 2 0.71≈ . However, in the two-
state approximation the bunching is [4] 2 * 2

0 1| | | |b c c−= =  
2

1 2P P p= Δ  (because 2
1 0| |P c=  and 2

2 1| |P c−= ), so that 
the maximum bunching in the two-state approximation is 
also 0.5, in agreement with the limitation given by Eq. 
(11). 

We now introduce a minimum uncertainty state. It has 
been demonstrated [6] that there is no state that allows the 
symmetrical uncertainty relation Eq.(9), (11) to reach its 
minimum value. However, there exist states that minimize 
one of the two uncertainty relations (8). These minimum 
uncertainty states are solutions of the equation 
( ) min min/ sin ( ) ( )iθ γ θ ψ θ λψ θ∂ ∂ + = [6],[9]. The solution of 

minψ  is 

2cos 2 sin ( / 2)
min ( ) i iGe eγ θ λθ γ θ λθψ θ + − += ∝  (12) 

 
Because ψ  must be single valued, m pλ = = ,  

sin 0θ =  and G is the normalization constant, given by 
2

2 2 cos
0

0

2 (2 )G d e I
π

γ θθ π γ− = =∫ [6], where In is the 

modified Bessel function. States (12) minimize the first 
uncertainty relation in (8) and describe states with a 
nonzero energy spread. In fact, they reduce, for γ=0, to 

the eigenstates (1/ 2 )exp( )imπ θ of p , whereas for  large 

values of  γ, 2
min exp( / 2 )imψ γθ θ∝ − + , i.e. the 

minimum uncertainty state becomes a Gaussian 

wavepacket with / 2p γΔ =  and  1/ 2θ γΔ =  such that 

1/ 2p θΔ Δ = .  

In general,  ( )( )1 0/ 2 (2 ) / (2 )p I Iγ γ γΔ = [6]. These 
states, originally introduced by Jackiw [9] to describe the 
phase of the photon, could be useful to describe the 
energy spread in the quantum description of FEL. 

QUANTUM FIELD DESCRIPTION 
An alternative description to the N-particle 

Hamiltonian model can be formulated in the second-
quantization formalism, treating the electrons as not 
interacting bosons [10]. In this formulation, the N 
particles are described by a matter-field operator ˆ ( , )zθΨ  
obeying the bosonic equal-time commutation relation 

( ) ( )ˆ ˆ, 'θ θ+⎡ ⎤Ψ Ψ =⎣ ⎦  ( ')δ θ θ−  and the normalization 

condition 
2

0
ˆ ˆ ˆ( ) ( )d N

π
θ θ θ+Ψ Ψ =∫ . In this formulation, the 

second-quantizied Hamiltonian is 
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where H is the single-particle Hamiltonian defined in (1).  
The Heisenberg equation for ψ̂  and a  are: 
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Then, expanding the matter-wave field in the momentum 
basis, ˆ ( ) ( )n nn

c uθ θΨ = ∑ , where ( ) (1/ 2 )ein
nu θθ π=  

are the eigenfunctions of p with eigenvalue n and nc are 
the annihilation operators for the state with eigenvalue n, 
with ' , ',n n n nc c δ+⎡ ⎤ =⎣ ⎦  Eqs.(14) become 
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The semiclassical regime of Eqs.(15), in which a and cn 

are treated as classical functions, has been investigated in 
[8]. A fully quantum treatment of the linear regime of Eq. 
(14) has been given in [7], considering the equilibrium 
state with no photons and all the electrons in the state 
with n=0 (i.e. 

0
0a =  and 0 0 0

c c N+ = ) . Then, 

considering 1 1,c c−  and a as fluctuation operators, we 
obtain the same quantum linear equations (6), in which  
the bunching and the momentum bunching operators are 
defined as 1 1B c c+

−= +  and ( )1 1 / 2P c c+
−= − . In this 

description the electrons have initially a definite value of 
momentum (i.e. p=0), so that they are unlocalized in 
position.  

The  dynamics of the system is that of three parametric 
coupled harmonic oscillators, 1 1a c−= , 2 1a c=  and 

3a a= , which obey commutation rules , 0i ja a⎡ ⎤ =⎣ ⎦  and 

,,i j i ja a δ+⎡ ⎤ =⎣ ⎦  for i=1,2,3. Starting from vacuum state of 
the three modes, it has been demonstrated [7] that the 
state at z is 
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where ( )2
1,2 3,2 1| | 1n nα = +   and i i in a a+=  are the 

average occupation numbers. The state 1n  refers to 
electrons with negative recoil (decelerating), 2n  with 
positive recoil (accelerating) and 3n  is the photon 
number. Note that the occupation number of the mode 1 is 
given by the sum of the other two, as a consequence of  
the constant of motion 1 2 3C n n n= − − , with 0C =  
when the system starts from vacuum. For the state (16), 
the number variance is 2 (1 )i i in nσ = +  [1,2,7] i.e. the 
statistics is that of a thermal state. The state (16) is three-
mode entangled, i.e. the recoiling electrons and the 
emitted photons are entangled.  

It can be seen that for 1ρ ≤  the electrons, initially in 
the momentum state 0n = , can  populate only the lower 
momentum state 1n = − , recoiling backward by kh when 
a photon is emitted. In this quantum regime the system 
behaves as a two-level system [4], described by the two 
operators 0c  and 1c− . In the linear regime, the average 
number of photons grows exponentially as 

3 1 (1/ 4)exp( )n n zρ≈ ≈  at resonance (i.e. for 
1/ 2δ ρ= ) and the maximum number of emitted photons 

is N. 

In the quantum regime the state (16)  reduces to the 
pure bipartite state with 2 0n ≈ : 
 

( )1 1
0

( ) 1 / 1 ( ) , 0 ,m

m
z n z m mψ α

∞
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where ( )2
1 1 1| | 1n nα ≈ + . The state (17) is 

maximally entangled because the photon and the 
recoiling electron are generated in pairs. 

CONCLUSIONS 
In conclusion, we have revised the quantum linear 

theory of the N-particle free-electron laser, introducing 
properly symmetrized electron collective operators. This 
allows to obtain the correct cubic characteristic equation, 
showing the shift and the narrowing of the FEL 
resonance. We have shown that intrinsic quantum 
mechanical properties of the momentum and position 
operators  imply a very general minimum uncertainty 
relation between energy spread and bunching, yielding a 
quantum limitation to the maximum bunching which can 
be obtained in an FEL. A minimum uncertainty state has 
been properly defined so that it reduces to a gaussian 
packet in the small fluctuation limit. Using a second-
quantized treatment we show that, in the quantum regime, 

1ρ < , the photon field and recoiling electrons are 
described by an maximally entangled quantum state. This 
property is well known to be quite fundamental for 
quantum information and quantum computing. 
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