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Abstract

Quantum and free-electron lasers (FELs) are based on
distributed interactions between electromagnetic radiation
and gain media. In an amplifier configuration, a for-
ward wave is amplified while propagating in a polarized
medium. Formulating a coupled mode theory for exci-
tation of both forward and backward waves, we identify
conditions for phase matching, leading to efficient excita-
tion of backward wave without any mechanism of feedback
or resonator assembly. The excitations of incident and re-
flected waves are described by a set of coupled differential
equations expressed in the frequency domain. The induced
polarization is given in terms of an electronic susceptibil-
ity tensor. In quantum lasers the interaction is described
by two first order differential equations. In free-electron
lasers, the excitation of the forward and backward modes is
described by two coupled third order differential equations.
In our previous investigation analytical and numerical so-
lutions of reflectance and transmittance for both quantum
lasers and high-gain FELs were presented. In this work
we extend the study to a general free-electron laser with-
out restriction of the high-gain approximation. It is found
that when the solutions become infinite, the device oper-
ates as an oscillator, producing radiation at the output with
no field at its input, entirely without any localized or dis-
tributed feedback.

INTRODUCTION

Conventional (quantum) lasers, microwave tubes and
free-electron lasers (FELs) are based on distributed inter-
actions between electromagnetic radiation and gain media.
When such devices are operating in an amplifier configu-
ration, a forward wave is amplified while propagating in a
polarized medium, in a stimulated emission process [1].
In an oscillator configuration a resonator [2]-[4] or a dis-
tributed feedback in quantum lasers [5] and in free-electron
lasers [6, 7] are employed to circulate the radiation, which
is excited and amplified by the gain medium. If the single-
pass gain is higher than the total losses, the radiation inten-
sity inside the cavity increases and becomes more coherent.

After several round trips, the radiation is built up until ar-

Figure 1: Schematic illustration of incident and reflected
waves in a distributed gain medium.

riving at the nonlinear regime and saturation.

In this paper we suggest a mechanism of generation of
laser oscillations, without any feedback means. This ex-
tends our previous study [8] dealt with free-electron lasers
operating in high-gain limit. It is shown that under condi-
tions of phase-matching, both forward and backward waves
can be excited in a distributed gain medium as illustrated
schematically in Figure 1. The excitation of incident and
reflected waves is described by a set of two differential
equations coupled by the induced polarization of the gain
media. The coupling coefficient is given in terms of the
electronic susceptibility tensor. The mechanism was first
suggested as a possible explanation for generation of para-
sitic oscillations near the waveguide cut-off frequency in a
waveguide-based FEM configured as an amplifier [9, 10].

Two cases are discussed: In quantum lasers, which are
characterized by isotropic, homogeneous gain media, the
interaction is described by two first order differential equa-
tions. In free-electron lasers [11] where the susceptibility
is space dependent, the set includes two differential equa-
tions of the third order each. The coupled equations sets
are solved analytically for both cases. Oscillation condi-
tions are identified from the derived reflectance and trans-
mittance coefficients.
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EXCITATION OF FORWARD AND
BACKWARD MODES

The total electromagnetic field is given by the time har-
monic wave vector:

E(r, t) = �
{
Ẽ(r)e−jωt

}
(1)

where Ẽ(r) is the phasor of the wave oscillating at an an-
gular frequency ω. The vector r stands for the (x, y, z) co-
ordinates, where (x, y) are the transverse coordinates and
z is the axis of propagation. In the case of excitation of
forward and backward modes, the phasor can be written as
the sum [12, 13]:

Ẽ(r) =
[
C+(z) e+jkzz + C−(z) e−jkzz

] Ẽ(x, y) (2)

C+(z) and C−(z) are scalar amplitudes of forward and
backward modes respectively, with profile Ẽ(x, y) and ax-
ial wavenumber kz . The evolution of the amplitudes of the
excited modes is described by a set of two coupled differ-
ential equations [14]:

d

dz
C±(z) = ∓ 1

2N e∓jkzz

∫ ∫
J̃(r) · Ẽ∗(x, y) dx dy (3)

The normalization of the mode amplitudes is made via the
complex Poynting vector power:

N =
∫ ∫ [

Ẽ⊥(x, y)× H̃∗
⊥(x, y)

]
· ẑ dx dy (4)

The total power carried by the forward and backward
(propagating) modes is:

P (z) =
1
2
�

∫ ∫ [
Ẽ(r)× H̃∗(r)

]
· ẑ dx dy

=
1
2

[|C+(z)|2 − |C−(z)|2] · � {N} (5)

When the interaction takes place in a polarized gain
medium, the driving current density J̃(r) is given in terms
of the induced polarization (dipole moment per unit vol-
ume) P̃(r). In the time domain, the current density is the
time derivative of the induced polarization. Thus, the pha-
sor representation of the driving current density is given
by:

J̃(r) = −jωP̃(r) = −jωε0 χ(r, ω) · Ẽ(r) (6)

where χ(r, ω) is the electronic susceptibility tensor at the
frequency ω (in a homogeneous isotropic medium it is a
scalar). Using (6) in (3) results in:

d

dz
C±(z) =

±j
ωε0

2N e∓jkzz

∫ ∫
Ẽ(r) · χ(r, ω) · Ẽ∗(x, y) dx dy (7)

Substitution of the field expansion (2) in the excitation
equations (7), the mode amplitudes C±(z) are described

by a set of two coupled differential equations, that can be
presented in a matrix form:

d

dz

[
C+(z)
C−(z)

]
=

[
+κ(z) +κ(z)e−j2kzz

−κ(z)e+j2kzz −κ(z)

] [
C+(z)
C−(z)

]
(8)

The coupling parameter:

κ(z, ω) ≡
j
ωε0

2N
∫ ∫

Ẽ(x, y) · χ(r, ω) · Ẽ∗(x, y) dx dy (9)

is in general a complex, space-frequency dependent quan-
tity. Since the matrix (8) is singular (the determinant is
equal to zero), the following relation is derived:

d

dz
C−(z) = −e+2jkzz d

dz
C+(z) (10)

QUANTUM LASER

We relate first to gain media, where the electronic sus-
ceptibility does not change along the axis of propagation z.
This situation occurs in quantum lasers, where the atomic
susceptibility of the gain medium is uniform [1]. In that
case the coupling parameter is not yet space (z) depen-
dent and can be presented in the complex form κ(ω) =
γ(ω) + jβ(ω), where γ(ω) is the field gain factor. Conse-
quently, the set (8) can be written as two coupled first order
linear differential equations:

d

dz

[
C+(z)
C−(z)

]
=[

+κ +κe−j2kzz

−κe+j2kzz −κ

] [
C+(z)
C−(z)

]
(11)

Analytical solution of the coupled set (11) for a given for-
ward mode amplitude C+(0) at the input z = 0, while
the backward mode amplitude at the exit of the interaction
region (z = L) is C−(L) = 0, leads to the solution of
incident and reflected wave amplitudes:

C+(z)
C+(0)

=

(κ + jkz) sinh [S(L− z)]− S cosh [S(L− z)]
(κ + jkz) sinh(SL)− S cosh(SL)

e−jkzz

C−(z)
C+(0)

=
−κ sinh [S(L− z)]

(κ + jkz) sinh(SL)− S cosh(SL)
e+jkzz

(12)

where S ≡ √
(κ + jkz)2 − κ2 is a complex parameter.

The evolution of incident and reflected wave amplitudes
along the gain medium are shown in Fig. 2. It is assumed
that the interaction takes place in the vicinity of the reso-
nance frequency, where κ(ω0) is real
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Figure 2: The evolution of (a) incident and (b) reflected
wave amplitudes along the gain medium.

The transmission gain is defined by:

C+(L)
C+(0)

=

−SL

(κ + jkz)L sinh(SL)− SL cosh(SL)
e−jkzL (13)

Respectively, the reflection gain is:

C−(0)
C+(0)

=
−κL sinh(SL)

(κ + jkz)L sinh(SL)− SL cosh(SL)
(14)

Contour plots of the transmission and reflection power gain
in the (kzL, κL) plane are shown in Figure 3. An infinite
gain singularities are inspected when the denominator of
the gain dispersion relations given in (13) and (14) van-
ishes. This happens when:

tanh(SL) =
SL

κL + jkzL
(15)

In that case the forward and backward modes will be ex-
cited in the absence of an input signal, resulting in excita-
tion and buildup of oscillations. Equation (15) expresses
the oscillation condition, determining the threshold gain
factor required for excitation of oscillations and their re-
sultant frequencies at steady-state.

FREE-ELECTRON LASERS

In free-electron lasers, the accelerated electrons serve as
a gain medium and the interaction with the electromagnetic
field takes place along the e-beam axis. Coupled mode
theory for multi transverse mode excitation was developed
previously, deriving an expression for the gain-dispersion
relation in the linear regime of the FEL operation [11].
Set of equations (3) for the different modes were solved to-
gether with the small-signal moment equations describing
the evolution in the driving current modulation.
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Figure 3: (a) Transmission and (b) reflection contours in
the (kzL, κL) plane for atomic laser. Logarithmic scale in
[dB].

In free-electron lasers, the excitation of forward and
backward waves is described by two coupled differential
equations of the third order each [11]:

d3

dz3
C+(z)− 2jΘ+

d2

dz2
C+(z) +

(
Θ2

pr −Θ2
+

) d

dz
C+(z)

= jκC+(z) + jκC−(z)e−j2kzz

d3

dz3
C−(z)− 2jΘ−

d2

dz2
C−(z) +

(
Θ2

pr −Θ2
−

) d

dz
C−(z)

= −jκC+(z)e+j2kzz − jκC−(z)

(16)

where the coupling parameter:

κ =
ε0ζq

4N
ω2

p

v2
z0

(kz + kw)

×
∫ ∫

f(x, y) Ẽpm(x, y) Ṽw
⊥ · Ẽ∗⊥(x, y) dx dy (17)

here Ẽpm
q (x, y) is the pondermotive field, f(x, y) is the

transverse profile of the e-beam and ωp is the plasma fre-
quency of a relativistic beam with average axial electron
velocity vz0 = βz0 c (c ≈ 3 · 108 m/s is the speed of light).

In equation (16)

Θ± ≡ ω

vz0
∓ kz − kw (18)

is the detuning parameter, here kw = 2π
λw

(λw is the pe-
riod of the wiggler), and Θpr = ω

vz0
is the space-charge

parameter.
When the electromagnetic radiation is excited in free-

space or in an overmoded waveguide, the detuning param-
eter can be approximated by

Θ± ∼= kz

(
1

βz0
∓ 1

)
− 2π

λw (19)
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Figure 4: (a) Transmission and (b) reflection contours in
the (kzL, κL3) plane for free-electron laser. Logarithmic
scale in [dB].

Figure 4 describes numerical results of the power
transmission and reflection coefficients obtained for a
mildly relativistic free-electron maser where βz0=0.5 and
λw=5 cm in Compton regime where space-charge effects
are neglected (Θpr = 0). Considering a case where there is
no prebunching in the electron beam, an initial amplitude
C+(0) �= 0 is assumed with derivatives C ′

+(0) = C ′′
+(0) =

0 (here ′ denotes first order derivative d
dz ). Since no back-

ward wave is propagating at z = L, its derivatives up to the
second order vanish, that is C−(0) = C ′

−(0) = C ′′
−(0) =

0. Contour plots of the coefficients are described in the
(kzL, κL) plane, where infinite peaks express conditions
for oscillation excitation. Presenting the plots as a function
of the axial wave number kz enables one to calculate the
oscillation frequency using the specific dispersion relation
of the cavity or waveguide.

SUMMARY AND CONCLUSIONS

In this paper we presented a coupled-mode theory for
excitation of forward and backward modes in distributed
gain media. Conventional quantum lasers and free electron
lasers were considered. It is shown that under condition
of phase matching, the mutual coupling leads to an infinite
transmission and reflection gain resulting in self- excita-
tion and oscillations. This effect reveals generation of laser
oscillations without the need of feedback mirrors. The fre-
quency of oscillations and the threshold coupling are found
using solution of sets of two coupled differential equations
describing excitation of forward and backward modes. An-
alytical and numerical solutions of the coupled equations
were carried out, presenting the transmission and reelec-
tion as a function of the normalized wave number kzL and
gain parameter κL3.
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