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Abstract

Influence of a linear energy chirp in the electron beam on
a SASE FEL operation is studied analytically and numer-
ically using 1-D model. Explicit expressions for Green’s
functions and for output power of a SASE FEL are obtained
for high-gain linear regime in the limits of small and large
energy chirp parameter. Saturation length and power ver-
sus energy chirp parameter are calculated numerically. It is
also shown that the effect of linear energy chirp on FEL
gain is equivalent to linear undulator tapering (or linear
energy variation along the undulator). A consequence of
this fact is a possibility to perfectly compensate FEL gain
degradation, caused by the energy chirp, by means of the
undulator tapering (while keeping a frequency chirp in the
radiation pulse) independently of the value of the energy
chirp parameter. This opens up a possibility of a conceptual
breakthrough: by a proper choice of energy chirp, undula-
tor tapering, and bandwidth of a monochromator, installed
behind the undulator, one can select a radiation pulse which
is much shorter than inverse FEL bandwidth.

INTRODUCTION

Start-to-end simulations [1] of TTF FEL, Phase 1 [2],
have shown a presence of a strong energy chirp (energy-
time correlation) within a short high-current leading peak
in electron density distribution that has driven SASE FEL
process. The energy chirp was accumulated due to the lon-
gitudinal space charge after compression. According to the
simulations (that reproduced well the measured FEL prop-
erties), the energy chirp had a dramatical impact on SASE
FEL saturation length and output characteristics. A simi-
lar effect takes place during the operation of VUV FEL at
DESY in a ”femtosecond mode” [3]. Such a mode of oper-
ation might also be possible in future X-ray SASE FELs.

There also exists a concept of frequency-chirped SASE
FELs1 aiming at the shortening of radiation pulse with the
help of a monochromator [4]. Energy chirp can also be
used to tune the output frequency of an FEL with coherent
prebunching as it was demonstrated in the experiment at the
DUV FEL facility [5]. Thus, a theoretical understanding of
the energy chirp effect on the FEL performance is of crucial
importance.

Analytical studies on this subject were performed in [6]
in one-dimensional approximation. The general form of a
time-domain Green’s function as an inverse Laplace trans-
form was derived in [6]. It was then reduced to the ex-

1Frequency chirp of SASE FEL radiation is correlated with energy
chirp in the electron beam due to the FEL resonance condition

plicit expression in the limit of small energy chirp param-
eter up to the first order, resulting in phase correction (and
ignoring the gain correction). This explicit solution for the
Green’s function was used to analyze statistical properties
of a chirped SASE FEL in this limit. A second order cor-
rection to the FEL gain was presented in [4] but this result
is incorrect.

The goal of this paper is to study the impact of energy
chirp on SASE FEL performance and to find a possible way
to cure the FEL gain degradation.

GREEN’S FUNCTION

Electric field of the amplified electromagnetic wave is
presented in the form2

E = Ẽ exp[iω0(z/c− t)] + C.C. ,

where ω0 is a reference frequency and Ẽ is slowly-varying
amplitude [7]. As it was shown in [6], for a SASE FEL,
driven by an electron beam with linear energy chirp, Ẽ can
be written as follows (we use notations from [7]):

Ẽ = 2E0

∑
j

e−iŝj/ρe2iα̂ŝj(ŝ−ẑ/2−ŝj)g(ẑ, ŝ− ŝj , α̂) (1)

Here ρ is the efficiency parameter [7], E0 is the saturation
field amplitude [7], ẑ = Γz is a normalized position along
the undulator, Γ = 2kwρ, λw = 2π/kw is the undulator
period, ŝ = ρω0(z/v̄z0 − t) is normalized position along
the electron bunch, v̄z0 is average longitudinal velocity (de-
fined for a reference particle). Let the energy linearly de-
pend on a particle position in the bunch (or arrival time).
The energy chirp parameter

α̂ = −dγ

dt

1
γ0ω0ρ2

is defined such that, for positive sign of α̂, particles in the
head of the bunch have larger energy than those in the tail.
Relativistic factor γ0 for a reference particle (placed at ŝ =
0) and reference frequency ω0 are connected by the FEL
resonance condition: ω0 = 2ckwγ2

0/(1 + K2), K being
rms undulator parameter. Note that the theory is applicable
when ρα̂ � 1 [6]. It is also useful to define normalized
detuning [7]: Ĉ = [kw − ω(1 + K2)/2cγ2

0 ]/Γ.
The Green’s function g, entering Eq. (1), is given by the

inverse Laplace transform [6]:

2Plane wave and planar undulator are considered in this paper
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g(ẑ, ŝ, α̂) = 2

γ′+i∞∫
γ′−i∞

dp

2πip
exp[f(p, ẑ, ŝ, α̂)] , (2)

where

f(p, ẑ, ŝ, α̂) = p(ẑ − 2ŝ) +
2iŝ

p(p + iα̂ŝ)
(3)

We use a saddle point approximation to get an estimate of
the integral (2) for large values of ẑ [6]. The saddle point
is determined from the condition f ′ = 0 which leads to the
4th power equation with three parameters:

p4 + 2iα̂ŝp3 − α̂2ŝ2p2 − 4iŝ

ẑ − 2ŝ
p +

2α̂ŝ2

ẑ − 2ŝ
= 0 (4)

Once the saddle point, p0, is found, the Green’s function
can be approximated as follows:

g(ẑ, ŝ, α̂) =
2 exp[f(p0, ẑ, ŝ, α̂)]

p0[2πf ′′(p0, ẑ, ŝ, α̂)]1/2
(5)

Let us first consider the case when the energy chirp is
a small perturbation, |α̂|ẑ � 1, ẑ � 1. A second-order
expansion of the Green’s function takes the following form

g(ẑ, ŝ, α̂) � e−iπ/12

√
πẑ

exp
[
i1/3ẑ + i2/3 α̂ŝ

2

(
1 + i

α̂ẑ2

36

)

−9i1/3

(
1− α̂2ẑ2

216i2/3

)
(ŝ− ẑ/6)2

ẑ
− i

2
α̂ŝ(ẑ − 2ŝ)

]
(6)

The leading correction term is the last term in the argu-
ment of the exponential function. It was found in [6] (note
difference in definition of normalized parameters). Setting
α̂ = 0, one gets from (6) the well-known Green’s function
for unchirped beam [8].

Now let us consider the case α̂ > 0 and 1 � α̂ � ẑ.
The Green’s function for ŝ� α̂−1 is approximated by:

g(ẑ, ŝ, α̂) �
(

α̂

2π2ẑ

)1/4

exp

(
2

√
2ẑ

α̂
− 2

√
2
α̂ẑ

ŝ

)
(7)

More thorough analysis for small values of ŝ shows that
the Green’s function is peaked at ŝm = 21/3α̂−1, i.e. the
position of maximum is independent of ẑ while the width
of the radiation wavepacket is proportional to

√
α̂ẑ. The

mean frequency of the radiation wavepacket corresponds
to a resonant frequency at ŝ = 0. Note also that the beam
density excitation is concentrated near ŝ = 0 within much
shorter range, of the order of α̂−7/4ẑ−1/4.

In the case α̂ < 0 and 1� |α̂| � ẑ the Green’s function
is given by:

g(ẑ, ŝ, α̂) � 21/4e−iπ/2

π1/2|α̂|5/4ẑ3/4ŝ
exp

(
2

√
2ẑ

|α̂|

+i|α̂|ẑŝ +
2i

|α̂|2ŝ −
2
√

2
|α̂|7/2ẑ1/2ŝ2

− 2

√
2
|α̂|ẑ ŝ

)
(8)

The width of the radiation wavepacket (and of beam den-
sity excitation as well) is of the order of |α̂|−7/4ẑ−1/4.
The maximum of the wavepacket is positioned at ŝm =
25/4|α̂|−7/4ẑ−1/4, i.e. the wavepacket is shrinking and
back-propagating (with respect to the electron beam) with
increasing ẑ. The mean frequency of the wavepacket is
blue-shifted with respect to resonant frequency at ŝ = 0.
In normalized form this shift is ΔĈ = −|α̂|ẑ/2.

LINEAR REGIME OF SASE FEL

The normalized radiation power (normalized efficiency),
< η̂ >= PSASE/ρPbeam, can be expressed as follows [7]:

< η̂ >=
< |Ẽ|2 >

4E2
0

, (9)

where < ... > means ensemble average. One can easily get
from (1):

< η̂(ẑ, α̂) >=
1

Nc

∫ ∞

0

dŝ|g(ẑ, ŝ, α̂)|2 . (10)

Here Nc = Nλ/(2πρ) is a number of cooperating elec-
trons (populating Δŝ = 1), Nλ is a number of electrons
per wavelength. The local power growth rate [9] can be
computed as follows:

G(ẑ, α̂) =
d

dẑ
ln < η̂(ẑ, α̂) > . (11)

Applying Eqs. (10), (11) to the asymptotical cases, con-
sidered in the previous Section, we get the following re-
sults. For the case |α̂|ẑ � 1, ẑ � 1 the FEL power is
given by

< η̂ >�
exp

{√
3ẑ

[
1− (α̂ẑ/12)2 /3

]
+ α̂ẑ/12

}
35/4

√
πẑNc

(12)

and the local power growth rate is

G(ẑ, α̂) �
√

3

[
1−

(
α̂ẑ

12

)2
]
− 1

2ẑ
+

α̂

12
. (13)

It reaches maximum Gm =
√

3
[
1− (|α̂|/16)2/3

]
+ α̂/12

at the position ẑm = 31/222/3/|α̂|2/3. Although the condi-
tion |α̂|ẑ � 1 was used to derive Eqs. (12), (13), they are
pretty accurate up to the values |α̂|ẑ of the order of unity as
it was seen from comparison with numerical simulations.

For the case α̂ > 0 and 1� α̂� ẑ we get rather simple
expressions:

< η̂(ẑ, α̂) >� α̂

8πNc
exp

(
4

√
2ẑ

α̂

)
, (14)
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Figure 1: Increase of saturation length Δẑsat = ẑsat(α̂) −
ẑsat(0) versus parameter α̂. Here ẑsat(0) = 13.

G(ẑ, α̂) � 2

√
2
α̂ẑ

. (15)

For large negative values of α̂ we obtain:

< η̂ >� 1
27/4π1/2|α̂|3/4ẑ5/4Nc

exp

(
4

√
2ẑ

|α̂|

)
, (16)

G(ẑ, α̂) � 2

√
2
|α̂|ẑ −

5
4ẑ

. (17)

NONLINEAR REGIME

We studied nonlinear regime of a chirped SASE FEL op-
eration with 1-D version of the code FAST [7, 10]. Analyti-
cal results of two previous Sections were used to check how
well we simulate energy chirp effect. Green’s function was
modelled by exciting density modulation on a short scale,
Δŝ� 1. SASE FEL initial conditions were simulated in a
standard way [7]. The results of numerical simulations in
all cases were in a good agreement with analytical results
presented above. The main results of simulation of non-
linear regime are presented in Figs. 1,2. Saturation length
and power are functions of two parameters, α̂ and Nc. For
our simulations we have chosen Nc = 3 × 107 - a typi-
cal value for VUV SASE FELs. Note, however, that the
results, presented in Figs. 1,2, very weakly depend on Nc.
Fig. 1 shows increase of saturation length with respect to
unchirped beam case. In Fig. 2 the output power is plot-
ted versus chirp parameter for two cases: when undulator
length is equal to a saturation length for a given α̂ and when
it is equal to the saturation length for the unchirped beam
case. One can see sharp reduction of power for negative
α̂ while a mild positive chirp (α̂ < 0.5) is beneficial for
SASE.

Figure 2: Normalized output power versus parameter α̂.
Solid: ẑ = ẑsat(α̂) (see Fig. 1); dash: ẑ = ẑsat(0) = 13.

ENERGY CHIRP AND UNDULATOR
TAPERING

Let us consider now the case when there is no energy
chirp (α̂ = 0) and the detuning parameter changes linearly
along the undulator [7]: Ĉ(ẑ) = b̂1ẑ. This change can
be due to variation of undulator parameters (K(ẑ) and/or
kw(ẑ)) or due to an energy change γ0(ẑ). We have found
from numerical simulations that in such case the effect
on FEL gain is exactly the same as in the case of energy
chirp and no taper if α̂ = 2b̂1 for any value of α̂ (Fig. 3
shows an example). Therefore, all the results of two previ-
ous Sections can be also used for the case of linear varia-
tion of energy or undulator parameters with the substitution
α̂→ 2b̂1. The amplitudes of Green’s functions are also the
same while the phases are obviously different. In case of
b̂1 = 0, α̂ �= 0 there is a frequency chirp along the bunch
while in the case b̂1 = 0, α̂ �= 0 the frequency is changing
along the undulator.

An effect of undulator tapering (or energy change along
the undulator) on FEL gain was studied in [9] in the limit
b̂1 � 1. Comparing our Eq. (12) (with the substitu-
tion α̂ → 2b̂1) and Eq. (45) of Ref. [9], we can see
that quadratic correction term in the argument of the ex-
ponential function is the same but the linear term is two
times larger in [9]. The reason for discrepancy is that
the frequency dependence of the pre-exponential factor in
Eq. (42) of Ref. [9] is neglected.

A symmetry between two considered effects (energy
chirp and undulator tapering) can be understood as follows.
If we look at the radiation field acting on some test electron
from an electron behind it, this field was emitted at a re-
tarded time. In first case a radiating electron has a detuning
due to an energy offset, in the second case it has the same
detuning because undulator parameters were different at a
retarded time. The question arises: can these two effects
compensate each other? We give a positive answer based
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Figure 3: Normalized power versus undulator length. Solid
line 1: α̂ = 0, b̂1 = 0; triangles: α̂ = 4, b̂1 = −2; solid
line 2: α̂ = 4, b̂1 = 0; circles: α̂ = 0, b̂1 = 2.

on numerical simulations (see Fig. 3 as an example): by
setting b̂1 = −α̂/2 we get rid of gain degradation, and
FEL power at any point along the undulator is the same
as in the case of unchirped beam and untapered undulator.
This holds for any value of α̂. For instance, if one linearly
changes magnetic field Hw of the undulator, the compen-
sation condition can be written as follows (nominal values
of parameters are marked with subscript ’0’):

1
Hw0

dHw

dz
= −1

2
(1 + K2

0 )2

K2
0

1
γ3
0

dγ

cdt
(18)

Of course, in such a case we get frequency chirped SASE
pulse. Since compensation of gain degradation is possible
also for large values of α̂ (there is no theoretical limit on
the value of chirp parameter, except for above mentioned
condition ρα̂� 1), one can, in principle, organize a regime
when a frequency chirp within an intensity spike is much
larger than the natural FEL bandwidth (given by ρω0).

GENERATION OF ATTOSECOND PULSES

Many schemes for generation of femto- and attosecond
pulses from X-ray SASE FELs are proposed. Here we
mention the schemes considered in [11, 12] making use of
energy modulation of a short slice in the electron bunch by
a high-power few-cycle optical pulse in a two-period un-
dulator. Due to energy modulation the frequency of SASE
radiation in X-ray undulator (resonant to, say, 0.1 nm [11])
is correlated to the longitudinal position within the few-
cycle-driven slice of the electron beam. The largest fre-
quency offset corresponds to a single-spike pulse in time
domain (about 300 as in [11]) . The selection of single-
spike pulses is achieved by using a crystal monochromator
after the X-ray undulator [11].

Using the compensation effect, described in the previous
Section, one can modify this scheme such that a monochro-
mator is not required. Indeed, there is a strong energy chirp

around zero-crossing of energy modulation (for specific pa-
rameters of Ref. [11] the chirp parameter is α̂ � 2). If
one uses undulator tapering with b̂1 � −1 then only a
short slice around zero-crossing produces powerful FEL
pulse. The main part of the bunch is unmodulated and is,
therefore, suffered from strong negative undulator tapering
(from Fig. 1 one can estimate a suppression factor of 104).
Therefore, a high-contrast attosecond pulse is directly pro-
duced in the undulator.

The fact that a SASE FEL can operate with a strong chirp
parameter (in combination with undulator tapering) with-
out gain degradation, opens up a possibility of a concep-
tual breakthrough: one can get from SASE FEL a radiation
pulse which is much shorter than inverse FEL bandwidth.
Indeed, in the case of α̂ � 1, the idea of Ref. [4] can be
generalized to a time scales that are much shorter than a
duration of intensity spike. In this case the frequency chirp
inside an intensity spike (its duration is given by inverse
FEL bandwidth) is much larger than FEL bandwidth. By
appropriate choice of a monochromator bandwidth [6] one
can select an X-ray pulse that is shorter by a factor

√
2α̂

than inverse FEL bandwidth.
To illustrate a possible technical realization of this idea,

we can suppose that the energy modulation by a few-cycle
optical pulse in the scheme of Ref. [11] is increased by a
factor 3 so that α̂ � 6. In combination with undulator
tapering and a monochromator, this will allow to obtain
intense X-ray pulses that are shorter than 100 as. Finally,
without discussing technical limits, we should stress that
a ”fundamental” limit on pulse duration (ρω0)−1 can be
overcome. That is the most important result of this paper.
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