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Abstract 
High-average power Free Electron Laser (FEL) designs 

will require high-brightness beams.  These beams may 
suffer beam quality degradation during transport through 
bending sections.  Potential mechanisms include 
microbunching instability and coherent synchrotron 
radiation.  The effects are not well-understood in the 
transient state, in the presence of conducting boundaries 
or when these effects operate together and in conjuction 
with the beam dynamics.  A simulation method applicable 
under the conditions of a MW-class average power FEL 
driver has been developed that accounts for radiation, 
space-charge and boundary conditions in a self-consistent 
manner.  This simulation may be useful in evaluating 
designs concepts under consideration including chicane 
bunch compression and energy recovery.. 

INTRODUCTION 
An electron bunch traveling along a circular trajectory 

can emit radiation coherently in as much as the 
wavelengths of interest are longer than the bunch length.   
This is called coherent synchrotron radiation (CSR).  As 
the bunch travels along the arc, the CSR will move 
forward relative to the bunch because of the shorter path 
length taken by the radiation along the cord of the arc 
compared to the bunch.  For high-brightness electron 
beam applications, this effect may adversely affect the 
transverse emittance by energy modulation that breaks the 
symmetry of an otherwise achromatic or isochronous 
bending system. 

This paper presents a simulation method that can used 
to estimate possible beam quality degradation by CSR.  It 
is based on a wave equation derived from Maxwell’s 
equations as a perturbation valid when the width of the 
waveguide, a, is small compared to the radius of 
curvature, R, in a bend.  This method is otherwise 
applicable to transient situations with waveguide 
boundary conditions, and is fully three-dimensional.  It 
automatically includes space-charge.  This paraxial wave 
equation can be combined with a particle-in-cell 
simulation that provides a means to evaluate beam quality 
degradation.  As an example, emittance growth in a four-
dipole chicane  is demonstrated. 

PARAXIAL WAVE EQUATION  
We can numerically solve for the radiation by taking a 

perturbation of Maxwell’s equation for small x/R, where x 
is the local displacement perpendicular to the main 
motion in the plane of curvature, using the usual 
accelerator curvilinear coordinate system.  Then, we make 

a Fourier transform our variables in the longitudinal 
coordinate, co-moving along the reference trajectory 

 

∫
+∞

∞−
−−

⊥⊥ = dkeskFszf zsik )(),,(
2
1),,( xx
π

.     (1) 

 
The resulting wave equation for the evolution of the 
fields, originally presented in [1],  modified to include 
finite γ  is 

 

(2) 

 
where: 
 
E⊥(k)  = Fourier transform of perpendicular electric field 
vector; 
γ  = reference trajectory relativistic factor; 
ρ = charge density; and 
∇⊥ = indicates gradient operator in x-y plane. 
 
The longitudinal field can be found from the 
perpendicular components using Poisson’s equation: 
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In Fourier-space, this can be solved under the same 
perturbation: 
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Also, under the same paraxial assumption, the electron 

current in directions other than along the axis can be 
neglected, and therefore will only generate a magnetic 
field along the principle axis of motion.  The Fourier-
space solution of the magnetic field is: 
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We are now in a position to compute all of the 

Lorentz forces generated by the three electric and one 
magnetic field components which are: 
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That these forces include space-charge can best be shown 
using an eigenfunction expansion which will be explained 
in the simulation methods section. 

BEAM DYNAMICS 
For the purposes of simulation, the electron beam 

dynamics resulting from the Lorentz forces (6)-(8), must 
be combined with the usual relativistic curvilinear 
dynamics to account for chromatic and dispersive effects.  
Specifically here, we will only describe dispersion to first 
order in energy deviation, although this could be 
improved in the future.   Additionally, other terms have 
been neglected under the assumption relatively small 
changes in energy.  The approximate equations of motion 
for individual electrons are: 
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SIMULATION METHODS 
 
In integrating (2), we use a pseudo-spectral method 

instead of finite-differencing, which forces the transverse 
boundary conditions.  Specifically, we split the integration 
step into two steps corresponding to the terms involving x 
and ∇⊥ respectively.  The second operator is integrated by 
first transforming into in only sine or cosine terms, 
depending on the applicable boundary conditions, so that 
the transverse Laplacian transforms from ∇⊥

2 → -k⊥
2.  

Therefore, equation (2) becomes the following two 
equations that are integrate each step: 
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where the ~ superscript indicates the coefficient of an 
expansion in products of cosine and sine terms  
appropriate for the boundary conditions.  To be specific, 
the expansions are: 
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where kx= nπ/a and ky= mπ/b.  In practice, these are 
replaced by their finite, or discrete forms.  By looking at 
the case of no curvature (R→∞), and steady state, we 
easily obtain the space-charge fields: 
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where yyxx kk eek +=⊥ . 
 

Putting (17) into (4)-(6) and expanding to order 
1/γ2, 
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Note that each component has the usual 1/γ2 dependence 
as expected and represent the space charge forces for the 
beam in a drift section. 

 
To complete the simulation, the charge density in (4) 

and (14) can be computed from a cloud-in-cell 
interpolation of an ensemble of macro-particles, and then 
integrated according to (9)-(12).  To keep the results 
accurate to second-order in time, a slightly complicated 
leapfrog sequence is implemented in the following order: 
 

1. x’ and y’ (half-step) 
2. Fields (half-step) 
3. z (half-step) 
4. γ 
5. x and y 
6. z (half-step) 
7. Fields (half-step) 
8. x’ and y’ (half-step) 
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RESULTS 
 
To test the method, a benchmark four-dipole chicane 

design, shown in figure 1 was integrated using the 
parameters listed in table 1 and 2.  No pulse compression 
(i.e. no energy chirp applied to pulse) was used at this 
time, because matters related to stability of this scheme 
have not been solved for a rapidly evolving beam 
distribution.   

 

 
 

Figure 1.  Four-dipole chicane.  The rectangles, B1-B4 
represent hard-edge magnets.   The grey sections indicate 
the rectangular waveguide. 

 
As an example of the complexity of the difficulty in 

calculating CSR in a waveguide from theory, the 
longitudinal electric field, taken at the mid-plane (y=0) of 
the waveguide as a function of x and z is shown (Fig. 2).  
In this coordinate system, recall that negative z is ahead of 
the reference point and x is positive away from the initial 
curvature.  The field is normalized to the steady-state 
longitudinal electric field for a Gaussian pulse [2]: 
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where: 
N = number of electrons in bunch, 
e= charge of electron, 
σ = pulse length (rms) of Gaussian bunch, 
 
Table 1.  Chicane parameters. 

 
Bend magnet length (projected) 0.5 m 
Drift length (projected) 5.0 m 
Bend radius 10.35 m 
Bending angle 2.77o 

Vertical gap 5 mm 
 

Table 2.  Electron beam parameters. 
 
Nominal energy 500 MeV 
Bunch charge 1.0 nC 
Incoherent energy spread 10 keV 
Bunch length, rms 20 mm 
Normalized emittance 1 mm-mrad 
Initial betatron function 10 m 
Initial alpha function  0.0 
 

 

 
 

Figure 2.  Longitudinal electrical field,, normalized to W0 
(15), at mid-plane (y=0) of rectangular waveguide (5 cm 
wide by 0.5 cm tall) as a function of x and z, at the exit of 
the first bending magnet. 

 
The dominant effect of coherent synchrotron radiation 

is to modulate the energy of the bunch in the bending 
magnet sections.   This effect is shown in figure 3  Then,  
dispersion leads to transverse emittance growth   
primarily by a correlated effect on x’ (vs. z), which when 
projected onto x-x’ phase space for the entire bunch 
increases the area occupied by the coordinates of the 
electrons as shown in figure 4. 

 
 

 
 

 

 
 
 
 
 
 
 

 

 

Figure 3.  Energy deviation as a function of position 
within the bunch, taken at the midpoint (drift space 
between second and third bending magnets), showing the 
effect of coherent synchrotron radiation 
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Figure 3.  Phase space plot at end of chicane with no 
chirp.  The projected normalized x-emittance growth is 
approximately 2.6 mm-mrad. 

CONCLUSIONS 
The model shows several promising features over 

previous methods of calculating CSR.  Specifically, it 
takes the boundary conditions into account explicitly, is 
fully three-dimensional, includes space charge, and is 
valid in transient conditions.  Furthermore, because it 
does not neglect the formation time,  it may be suitable 
for the study of potential instabilities.   

This model does however have limitations as well, the 
most notable of which is the assumption of periodicity 
implicit in the use of the longitudinal Fourier transform.   
Finally, it lacks a realistic model for attenuation due to 
finite resistivity of the walls.  Research continues in these 
areas as well as improvement in the theory of CSR.   
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