Summary: Beyond the Standard Model WG

Nobuchika Okada (KEK)

on behalf of the BSM conveners:

Graham Kribs (IAS/Oregon) N.O. (KEK) Maxim Perelstein (Cornell) Sabine Riemann (DESY)

ILC Workshop, Snowmass CO, August 27 2005

The Charge for the Physics Working Groups

- 1. What are the most important measurements that the ILC should perform in the subject area of your working group?
- 2. What are the key measurements by which the ILC will add to what is already known from the LHC?
- 3. What are the processes and measurements new to the community in the past few years that further motivate the case for the ILC?
- 4. For each of these measurements, what criteria for the detectors are necessary to allow measurements to the appropriate precision?
- 5. Are there detector capabilities that are not strongly challenged by the list of processes in #1 and #2? Is this acceptable, or are there additional measurements that should be added to the list against which detectors will be evaluated?

Our subject: Non-SUSY models beyond the Standard model

Alternatives to SUSY models

There are many interesting models:

Large extra dimension model (ADD)

Randall-Sundrum model (RS)

Universal Extra dimension model (UED)

Higgsless model

RS with matters in the bulk (**RSMB**)

Little Higgs model (LH)

T. Han's talk

K. Agashe's talk
M. Schmaltz's talk

Motivations of the models

Solving problems in the SM

fine-tuning problem: UV sensitivity of the Higgs mass Origin of the EW symmetry breaking Fermion mass hierarchy problem, etc. no Dark Matter candidate in the SM

What is the scale of the new physics?

No fine-tuning: $\Delta m_H^2 \propto \Lambda_{new}^2 \rightarrow \Lambda_{new} \sim 1 \text{TeV}$ Dark Matter: WMAP data $\rightarrow \Omega h^2 = 0.112^{+0.0161}_{-0.0181}$ the most reasonable candidate is WIMP whose mass scale is around O(100GeV - 1 TeV) New Physics lies around TeV scale \rightarrow accessible for LHC and ILC

General features of new physics models

1. new particles with mass around <u>100GeV – TeV</u>

2. characteristic couplings among SM matter and New Particles

→ <u>some new physics processes measurable at LHC and ILC</u>

3. Dark Matter candidate Yes/No

→ if Yes, <u>cosmology connections</u>

Relic density of DM highly depends on model parameters (mass and interactions) What can we do with LHC and ILC

New Physics could be discovered @ LHC

Precision measurements of New Physics properties (mass, coupling constant, particle properties) @ ILC could discriminate the models

if DM candidate \rightarrow <u>cosmological connections</u>

precision comparable to PLANCK

Studies for each BSM models

1. ADD model Arkani-Hamed-Dmopoulos-Dvali, PLB 429, 263, 1998

Brane World Scenario: 4+n dimensions

Low scale gravity: M = O(1 TeV)

Graviton Kaluza-Klein (KK) tower $\Delta m_{KK} = \frac{1}{R}$; $1/R = (M/M_P)^{2/n}M$

Universal couplings with SM particles $\mathcal{L}_{int} = -\frac{1}{M_P} G_{\mu\nu}^{KK} T_{SM}^{\mu\nu}$ Key processes @ILC:

1. gamma + missing $e^+e^- \rightarrow \gamma + KK$

2. KK graviton mediated processes $e^+e^- \rightarrow f\bar{f}, VV, HH$

(1) gamma + missing

(2) KK graviton mediated process

$$\mathcal{M} = \pm \frac{4\pi}{M_S^4} T_{\mu\nu}(p_1, p_2) T^{\mu\nu}(p_3, p_4)$$

Measurement of Spin 2 nature of intermediate KK graviton

MC simulations for HH

J. Hewett, PRL 82, 4765 (1999)

Derelue, Fujii & N.O., PRD 70, 091701 (2004)

2. RS model

Brane World Scenario: <u>4+1 dimensions</u>

Warped geometry: $M = O(1 \text{ TeV}) \sim M_P e^{-kr\pi}$

Graviton Kaluza-Klein (KK) tower

 $m_{KK}^{(1)}$ (model parameter), $m_{KK}^{(2)} \simeq 1.8 m_{KK}^{(1)}$...

Couplings with SM matters

$$\mathcal{L}_{int} = -\frac{1}{M} G^{(1)}_{\mu\nu} T^{\mu\nu}_{SM}; \quad M = \frac{m^{(1)}_{KK}}{3.83} \frac{M_P}{k}$$

Key processes @ILC:

KK graviton resonance production, if $\sqrt{s} > m_{KK}^{(1)}$

Virtual KK graviton mediated process, if $\sqrt{s} < m_{KK}^{(1)}$ \rightarrow same as ADD with correspondence Ms $\leftarrow \rightarrow$ M

Check universality of KK graviton couplings: $\mathcal{L}_{int} = -\frac{1}{M}G^{(1)}_{\mu\nu}T^{\mu\nu}_{SM}$

Ratios of KK graviton partial decay width

$$\begin{split} & \Gamma_{\gamma\gamma}: \Gamma_{gg}: \Gamma_{W^+W^-}: \Gamma_{ZZ} \simeq 1:8:2:1 \\ & \Gamma_{\ell\bar{\ell}}: \Gamma_{q\bar{q}}: \Gamma_{hh} \simeq 1:3:1/3 \end{split}$$

For $m_{final} \ll m_{KK}^{(1)}$

SM couplings with KK parity selection rule: total KK number should be even

1-loop corrected 1st KK mode mass spectrum

Spins of corresponding particles are different

Kinematics is similar → SUSY or UED? difficult @LHC

ILC → discriminate SUSY or UED

Processes:

Comparison of

Angular distribution

Battaglia, Datta, De Roeck, Kong, Matchev, hep-ph/0502041

If 1/R = 300 GeV or so \rightarrow ILC with $\sqrt{s} = 1 \text{TeV}$

Resonance hunting

Distinguish UED from MSSM by using resonances

Determine model parameters: **R** and Λ

<u>4. RSMB</u> (K. Agashe's talk)

Agashe, Contino, Sundrum, Servant, Pomarol, ...

RS model with Matter in the Bulk:

Solution to the gauge hierarchy problem Grand Unification without SUSY non-trivial configuration

couplings from wave function overlapping

AdS/CFT duality → composite states in 4D theory

Weak gravity Composite Higgs

Fermion mass hierarchy

Coupling with KK gauge boson

Phenomenology

Agashe, Perez & Soni, PRL 93, 201804 (2004)

Decay: unique signature!

KK gluon production @ LHC

10% shift in coupling to Z← Measurement @ ILC

4D model, <u>Higgs as (pseudo) Nambu-Goldstone particle</u>

 \rightarrow quadratic divergences at 1-loop are canceled out

by heavy particles with the same spin (LH mechanism)

New particles around 1 TeV: A_H , Z_H , W_H T_H , ...(LH partners)

Parameters: $f (> a \text{ few TeV}) \rightarrow \text{scale of new particles}$

two new gauge couplings \rightarrow interactions among SM and NP

If **T-Parity** \rightarrow SM particles: T-parity even

Chang & Low heavy gauge bosons: T-parity odd

 \rightarrow lightest T-odd particle (LTP) is DM candidate

Processes: heavy gauge boson mediation

4 Fermi int. $(\sqrt{s} < m_{heavy})$ **Resonances** $(\sqrt{s} > m_{heavy})$ $f\bar{f} \to f\bar{f}$

$f\bar{f} \to Zh$ ← Important to verify LH mechanism

Burdman, Perelstein & Pierce, PRL 90, 241802 (2003)

Coupling measurements

 $e^+e^- \to Z_H \to f\bar{f}$

Conley, Hewett & Le, hep-ph/0507198

T (LH partner of top quark) resonances @ LHC (ATLAS study)

3 isolated leptons Missing E > 100 GeV One b-jet

LH with T-parity H.-C. Cheng & Low, JHEP 0309, 051 (2003)

SM particles: T-even

→ R-parity in MSSM

Heavy gauge bosons: T-odd

T-parity kills tree level processes

PEW constraints are moderated $\rightarrow M_{LHpartners} > 500 \text{GeV}$

LTP is the DM candidate!

Hubisz & Meade, PRD 71, 035016 (2005)

Higgs can be heavy compare to the SM favored region

Need ILC physics study for parameters in the allowed region

Collider phenomenology of LH with T-parity

Pair produce new particles @ LHC and LCCascade decayMissing energy signals due to LTP

→ Similar to SUSY model

How to discriminate models?

SUSY? UED? LH with T-parity **Distinguishing s-channel resonances @ILC** (Talk by S. Godfrey)

There are lot of BSM models which predicts Z' (RS, LH, UED, E6 etc.)

These models have new s-channel structure

→ <u>How to distinguish the models?</u>

Resonances can be found @ LHC

 \rightarrow Distinguish the models by precision measurement @ ILC

(cross section, FB asymmetry, LR asymmetry)

In some cases, positoron polarization is very effective to reduce back ground **<u>Repository for BSM tools</u>** (Talk by P. Skands)

MCs of new BSM scenarios are important! → BSM tool development collection of BSM tools

Web Repository in Durham (P. Richardson) http://www.ippp.dur.ac.uk/montecarlo/BSM

You are invited to contribute

Conclusions

There are lots of well-motivated BSM models as alternatives to SUSY

These models predict New Particles with mass around 1 TeV, New Interactions, DM candidate, etc.

Some of New Particles would be discovered at LHC, but for some models it would be difficult to discriminate the models

Precision measurements (mass, couplings, spins etc.) at ILC could discriminate the models

Some models have been studied in detail, but some models recently proposed (LH with T-parity, RSMB etc.) have not and we need more studies

Collaborations among theorists and experimentalists are essential for ILC physics studies. Also, tool developments are very important

Let us bring progresses and information obtained at Snowmass back to your home institute and start and/or continue ILC studies for BSM

Acknowledgements

The BMS conveners would like to thank all the contributors!

I apologize that I can not mention all the contributions

Contributor List:

Kaustubh Agashe (Johns Hopkins/theory), Csaba Balazs (Argonne/theory), Andreas Birkedal (Florida/theory), Jose Cembranos (Irvine/theory), Hooman Davoudiasl (Wisconsin/theory), Nicolas Delerue (Oxford/exp), Ayres Freitas (FNAL/theory), Stephen Godfrey (Carleton/theory), JoAnne Hewett (SLAC/theory), Ben Lillie (SLAC/theory), Nobuchika Okada (KEK/theory), Carmine E. Pagliarone (INFN Pisa), Alexander Pankov (Gomel Tech State U.[Belarus]), Maxim Perelstein (Cornell/theory), Frank Petriello (Wisconsin/theory), Michael Peskin (SLAC/theory), Sabine Riemann (DESY/exp), Thomas Rizzo (SLAC/theory), Jonathan Rosner (Chicago/theory), Vladimir Savinov (Pittsburgh/exp), Peter Skands (FNAL/theory)

More contributions are welcome!

See ``http://www.lns.cornell.edu/~maxim/snowmass'' for more information