ILC Detector Cost Estimating

l ssues Numbers

- GLD A. Miyamoto; R. Settles
- LCD H. Videau
- SiD M. Breidenbach

Motivation

- Gain understanding of the cost scale of these detectors.
- Attempt to provide a basis for comparing detector costs.
- Develop tools for cost optimizing the detector concepts.
- SiD has beginnings of WBS and parametric cost tools.
- LDC has WBS and is intending a parametric approach
- GLD is beginning cost estimation
- All policy issues reflect our understandings- and are not official in any way.
- ILC is beginning to develop a cost methodology. ITER is possible model. ITER has "Core Values" in "ITER Units", which are used as a basis for distributing responsibilities.
- Tasks are "Key" (interesting to most everyone) and "Conventional" (boring??). Attempts are made to fairly allocate both varieties.
- ITER model is that host country pays all Facilities Costs.

ssues

• Accounting Rules:

- US versus European accounting:
 - US convention is to cost all technical labor -
 - Engineering
 - Technicians
 - Trades
 - But not faculty, physicists, students
 - European convention (appears to) cost none of the labor.
 - European system makes sense if adequate labor is permanently employed by the participating universities and labs and conversely!!
 - Both systems cost full M&S.
 - France is tending towards accounting of all labor by program.
- Japanese accounting seems similar to European, except that there is relatively little "in-house" labor. Consequently labor appears to be costed M&S.
- ILC: Account for M&S in ILC Units
- Account for labor by type in Man-Years.

Other Costs

- Preliminary Engineering is it a cost?
 - Conceptual design stage may well be considered R&D as is generic detector R&D. The R&D is usually not included...
 - But there are substantial costs in all stages of development of complex systems:
 - Preliminary Engineering (No!!!)
 - R&D
 - Design & Prototype
 - Final Engineering (Yes, but country dependent)
 - Production Prototypes
 - Production (Yes, but country dependent)
 - Installation & Commissioning (Yes, but country dependent)
 - ILC: Account labor as before, then country dependent.

Base and Contingency

- US convention is to generate base cost at ~66% confidence level, with explicit contingency that should take estimate to ~high 90's% confidence. (Confidence that project can be completed satisfactorily for the cost)
- European "style" appears to be less overt contingency, with more "hidden" in the base.
- European approach tends to use time (non-costed labor) as contingency.
- France requires risk analysis of projects.
- Japan has no explicit contingency.
- Contingency treatment is rather regional
- I LC: Core cost would be 50-50 probability of completing project for stated cost. No explicit contingency. Risk will be managed by local custom.

Escalation

- We all like to estimate in this year's \$\$.
- But inflation is real and we will be judged by the sum of then year \$\$ that we spend.
- Particularly important because there will be a noticeable Δt between now and construction start.
- Assuming inflation at 3%/year (optimistic?) and construction start in 2011 (optimistic?), escalation is a factor of ~1.3.
- Appears to be regional agreement that escalation is real! There is some difference of opinion as to stating escalation.

• ILC: Forget about it in Core Values. Worry about it at home.

Indirects

- Indirects pay for services at the host institutions. Services include purchasing, legal, accounting, etc.
- SiD estimate uses SLAC rates for large projects:
 - 6% on M&S
 - 20% on labor
 - These rates may be optimistic. FNAL appears to be:
 - ~16% on M&S
 - ~30% on labor
- Significant regional differences Europe would not include indirects....
- Japan would not include indirects, but awaits organization of ILC.
- ILC: Forget about it in Core Values. Worry about it at home.

GDE Request

- GDE would like a representative cost per detector.
- Need a decision N_{detectors}.
- No concept has done much aligned with the LC Cost methodology, but there are some regional beginnings.

Uniform Unit Costs

- The detectors have significant technology overlap-
 - Superconducting solenoids
 - Si detectors
 - Fe flux returns
 - W calorimeter radiator
 - Large area detectors for HCal and muon systems
 - Etc
- We need a mechanism to develop a uniform (although not necessarily correct) basis for estimating unit costs for significant technologies...if inter-detector comparisons are to mean anything. But in the ITER scheme, it's not clear what the comparisons mean.
- Will this happen in Snowmass??? (NO)

Some Critical Unit Costs

- Solenoid 0.81E(MJ)^{0.662}M\$ PDG + inflation. Seems to fit CMS
- Significant differences among detectors needs to be cleared up!!!

•	Si Detector	\$2/cm ²	Extrapolation and hints
•	Tracker & EMCal		
	Read Out Chips (ROC)	\$100 each	TSMC fab should be <\$40
•	HCal W (7mm)	\$75/Kg	extrapolation from quote on thinner material.
•	HCal Detector	\$2000/m ²	Babar RPC + square pixel readout
•	Magnet iron	\$3.48/Kg	Babar Kawasaki experience. Note iron is a commodity with big fluctuations.

GLD

Beginning Cost Estimation

Cost Estimates

Reference: M.A.Green, S.J.St.Lorant, "Estimating the Cost of Large Superconducting Thin Solenoid Magnets", Advances in Cryogenic Engineering, 39A, pp. 271-pp.276, Plenum Press, New York(1991)

Solenoid magnet

=5 BYen

M(tons): Weight(Coil+Cryostat) C3(m\$)=0.559x[M(tons)]^{0.719}

- = 0.599 x (78 + 191)^{0.719}
- = 34 M\$
- = 4 BYen

CR(m\$)²⁾ =1.51x[R(kW)]^{0.7}

Total Cost

9 BYen + 1BYen(Refrigerators + alpha)

<u>= 10BYen (85M\$)</u>

2): M.A.Green, R.A.Byrns, S.J.St.Lorant, "Estimating the Cost of Superconducting Magnets and the Refrigerators needed to keep them cold", Advances in Crybeshir Engineering, 37A, pp. 637-pp.643. Plenum Press, New York(1991)

10.0

Solenoid Coil and Cryostat Mass (metric tons)

26 August 2005

Return Yoke

<u>• Law material</u> \180/kg x 14900e3kg = 2.7BYen 2.7 x 1.2(+alpha) = 3BYen

<u>○ Design cost</u> 0.1BYen

<u>Cost for Quality Control</u>
50 MYen

<u>○ Profit</u> 20% 3.24BYenx0.2= 1BYen

Total 26**48%ep(35M\$)**

LCD

- Has developed WBS + some costs.
- Intends to develop parametric models
- No totals yet.

Work Breakdown Structure for LDC

	_				-		associated		_			Рr	. 00	uct Break	(dov	wn S	Stru	lCtu	re t	or F	1.CP
WBS Number	Detector concept / detect	oritems	Unit L	Jnit cost (€	Quantity	total m&s	unit labor	labor cost	Contact		-										
	_																				
2.1	Vertex detector																				
2.2	Luminosity Calorimeter																				
2.4	Beam calorimeter													1					laggerigted		-
2.5	Intermediate Tracker									WDC	Jumbor	Ecol		dotoctor itoma	Unit	Lipit cost (\$)	Quantity	total mga	associated	labor cost	datashaat NI°
2.6	Silicon envelope									4	Number	ECal		Medules	Unit	Unit COSt (\$)	Quantity	lotal mas	Unit labor	Tabor Cost	datasheet N
2.7	Time projection Chambe	r															40				
2.	7.1 Field cage									1.1				Alveolar structures			40				
	2.7.1.2 outer										1.1.1			R&D and design							
	2.7.1.3 central cathode											1.1.1.1		structural analysis							
	2.7.1.4 field termination grid											1.1.1.2		thermal analysis							
	2.7.1.5 Assembly											1.1.1.3		drawing							
2.	2.7.2 Endplate	support										1.1.1.4		documentation							
	2.7.2.2 readout pads	oupport									1.1.2			Material							
	2.7.2.3 gas amplification system											1.1.2.1		Mold							
2.	7.3 Gas system											1.1.2.2		fixing system							
	2.7.3.1 recirculation system com	ponents										1123		W for Alveaolas and H	tonnes	150	82				
	2.7.3.2 piping 2.7.3.3 gas properties monitors											1124		Prepreg							
2.	7.4 Laser calibration system											1.1.2.4		andean					_		
	2.7.4.1 Laser										112	1.1.2.0		Draduation					-		
	2.7.4.2 laser transport										1.1.3			Production					_		
2.	7.5 High voltage distribution 2.7.5.1 power supplies cables of	onnectors										1.1.3.1		assembly and fabrication procedures					_		
	2.7.5.2 monitoring , interlocks, ca	ontrol										1.1.3.2		Fab. Of H and alveolas							
2.	7.6 Readout electronics											1.1.3.3		tooling							
	2.7.6.1 front end readout									1.2				Detector SLAB and components							
	2.7.6.2 cables and connectors										1.2.1			Mechanics							
	2.7.6.3 cooling 2.7.6.4 back end readout											1.2.1.1		н							
2.	7.7 Assembly and installation	ı										1.2.1.2		PCB							
2.8	Forward Chambers												1.2.1.2.1	Shielding							
2.9	Electromagne	tic Calorimeter											1.2.1.2.2	ground foil							
2	.9.1 Barrel												1.2.1.2.3	glue							
	Mechanics (m	aterial											1.2.1.2.4	assembling tools							
	W&prepreg&m	nold,										1.2.1.3		SLAB							
	2.9.1. fabrication)										1.2.2			electronics							
	Detector (Si) a	nd										1.2.2.1		components VFE, chips							
	2.9.1. components (VFE. PCB)										1222		PCB		1					
	291 DAQ	,,		_								1.2.2.2	12221	dosign							
	2.9.1 Calibration sv	stem											1.2.2.2.1	uesign							
	2.0.1 Assembly and	installation		\sim									1.2.2.2.2	internetion							
2	9.2 Endcap	motanation		<u> </u>							122		1.2.2.2.3								
2.10	Hadron Calorimeter										1.2.3			Silicium							
2.	10.1 Barrel											1.2.3.1		wafers	m ²	0,5\$/cm ²	1510				
	2.10.1.1 Mechanics (design,mate	rial, fabrication)					\sim					1.2.3.2		process	m²	2\$/cm ²	1510				
	2.10.1.2 Protodetectors							\sim				1.2.3.3		control							
	2.10.1.4 Electronics, VFE, PCB								\sim		1.2.4			Power supplies							
	2.10.1.5 DAQ										1.2.5			Integration							
	2.10.1.6 HV/LV power supply and	slow control										1.2.5.1		R&D							
	2.10.1.7 Calibration systems											1.2.5.2		Wafers on PCB							
	2.10.1.9 Assembly and installation	ı										1.2.5.3		SLAB							
2.	10.2 endcap Barrel									1.3				Logistic							
2.11	Muon Detector									2	2										
2.12	Magnet		├							2				Acquisition			40				
2	12.2 Return Yoke																+0				
2.13	26 AUGUST 20	005						SID	CO:												
2.14	Offline computing																				
2.15	Infrastructure					├ ──┤															
3	GLD									\neg											
-																					

17/08/2005

Cost of the coil

From F. Kircher

Item	Cost(Y2000M€)						
	Lor ((TE:	ngmagnet 9.25m) SLATDR)	Sho	ortmagnet (7.0m)			
Coil Conductor Windingoperation Internal cryogenics and suspension Tooling for assembly Totalfor coil	9.5 10.0 3.0 1.2	23.7	7.8 8.2 2.5 1.1	19.6			
Yokeandvacuumtank Totalforyokeandvacuumtank		25.0		20.5			
Ancillaries Cryogenicplant E lectrical power circuit Control/monitoring system Total for ancillaries	4.3 1.9 1.3	7.5	3.8 1.5 1.3	6.6			
Miscellaneous(externalmanpower,test) Totalformiscellaneous		8.8		8.8			
Totalformagnet		65.0		55.5			

NB. The manpower costs listed are those for external manpower only

26 August 2005 (cost of manpower from labosatories is not included) idenbach There is no contingency

Cost of ECAL

From C. Clerc

does not contain the industrialisation R&D cost and manpower

Item	unit	Unit cost	total
Si barrel endcap	1510 m ² 623 m ²	Material: 0,5 \$ /cm ² Process:2 \$ /cm ² (in 2010 ???)	Barrel: 38 M \$ Endcap:16 M \$ Σ ≈ 54 M \$
W barrel endcap	82 t 34 t	150 \$ /kg (pure, rolled)	Barrel: 12,3 M \$ Endcap:5,1 M \$ Σ ≈ 17,4 M \$
Prepreg barrel endcap	≈6000 m² ≈2500 m²	97 \$ /m²	Barrel: 0,585 M \$ Endcap:0,245 M \$ Σ ≈ 0,83 M \$
<u>Chips (</u> TECH2) barrel endcap	420 000 180 000 (21 Mchannels,)	4 \$ /chip 0,12 \$ /ch	Barrel: 1,7 M \$ Endcap:0,7 M \$ Σ ≈ 2,4 M \$
PCB : barrel endcap	33600, 13900 25% of various length	According to last estimation for EUDET same cost than for chips : 0,12 \$ /ch	Barrel: 1,7 M \$ Endcap:0,7 M \$ Σ ≈ 2,4 M \$

Other aspects of cost

Contingencies + spare:

Si	5%
W	5% (1 module? Endcap+Barrel)
Chips	20%
РСВ	5%

Pre-studies for industrialization stage? To which extent is it to be included in the final cost?

>Quality tests and controls

Logistics: storage, packaging, transportation

➤Assembly : tooling and FTE ?

≻Inflation ?

SiD Fixed & Parametric Costs

- In general, each subsystem has:
 - Fixed costs, such as engineering, assembly tooling, etc which scale weakly (or not at all) with reasonable variation of the detector parameters.
 - The fixed costs have been tabulated in the SLAC program WBS.
 - Labor is based on real SLAC costs with benefits.
 - Contingencies are estimated for each item.
 - Parametric costs are those that scale with detector parameters, such as Tracker radius, HCal gap thickness, B, etc.
 - A self consistent SiD model is generated by the EXCEL program Parametric_Detectors_... (MB).
 - Quantities of various materials and associated labor are estimated and multiplied by unit costs. Labor estimates are crude.
 - Contingency is applied as fixed fraction.

SiD Working Assumptions

- All technical labor included
- Contingency is explicit
- All engineering is included
- Indirects are included
- Escalation is included
- Comparison among detectors requires agreement on the accounting issues!

Highest Level WBS

😭 SiD Mar	y 05.wbs - SLAC WBS								_ _ _ ×
		8 🏠 🙈 🖲	_8 🗱 💷	¥ ⊘ 1	л 🛷 🕯				
	│⊡ -⊔ ⊖ <i>क</i> -2 │ ⊜	nu 🛡 🖤 🕗							
	U Materials 🔐 Labor Rates								
VVB	S Component	Number Unit	Materials	MContingency	Material I otal	Labor	LContingency	Labor Iotal	lotal
1	NLC Detectors	1 each	30,324,700	10,313,870	40,638,570	57,851,541	19,618,907	77,470,448	118,109,018
		4	00 004 700	40.040.070	40,000,070	57.054.544	40.040.007	77 470 440	440,400,040
1.1	E- O Deute Liet	1 each	30,324,700	10,313,870	40,638,570	57,851,541	19,618,907	77,470,448	118,109,018
1.1.1	E M Vertex Det	1 each	4,000,000	2,000,000	6,000,000	0	0	0	6,000,000
1.1.2	🕀 👸 🛅 Tracker	1 each	3,940,000	1,485,000	5,425,000	6,624,400	2,754,920	9,379,320	14,804,320
1.1.3	🕀 💮 Calorimeters	1 each	2,400,000	2,120,000	4,520,000	10,448,800	4,529,840	14,978,640	19,498,640
1.1.4	🗄 💮 🛅 Muon Tracl	1 each	1,000,000	500,000	1,500,000	1,970,060	783,268	2,753,328	4,253,328
1.1.5	Electronics	1 each	7,758,400	1,654,600	9,413,000	21,639,330	6,457,926	28,097,256	37,510,256
1.1.6	🕀 🕎 Magnet	1 each	7,687,500	1,860,250	9,547,750	5,642,201	1,920,276	7,562,477	17,110,227
1.1.7	🕀 🕎 Installation	1 each	2,617,800	522,320	3,140,120	4,746,050	1,677,383	6,423,433	9,563,553
1.1.8	🗄 🕎 Management	1 each	921,000	171,700	1,092,700	6,780,700	1,495,295	8,275,995	9,368,695

2nd Level (example)

File Edit WBS View Help

1 = = = ≤ × • = = # • • • • = = × • • ↑ ↓ ♥ ●

🅎 WBS 👩 Materials 🖁 🔓 Labor Rates

WBS	Component	Number Unit	Materials	MContingency	Material Total	Labor	LContingency	Labor Total	Total
1	Y NLC Detectors	1 each	30,324,700	10,313,870	40,638,570	57,851,541	19,618,907	77,470,448	118,109,018
	⊕– 🕒 Parts List								
1.1	Ė−∰ sid	1 each	30,324,700	10,313,870	40,638,570	57,851,541	19,618,907	77,470,448	118,109,018
	🕀 🔚 Parts List								
1.1.1	🕀 🕎 🖺 Vertex Detector	1 each	4,000,000	2,000,000	6,000,000	0	0	0	6,000,000
1.1.2	🕀 🕎 🖺 Tracker	1 each	3,940,000	1,485,000	5,425,000	6,624,400	2,754,920	9,379,320	14,804,320
1.1.3	🛨 🅎 Calorimeters	1 each	2,400,000	2,120,000	4,520,000	10,448,800	4,529,840	14,978,640	19,498,640
1.1.4	🕂 🕎 🖺 Muon Tracker	1 each	1,000,000	500,000	1,500,000	1,970,060	783,268	2,753,328	4,253,328
1.1.5		1 each	7,758,400	1,654,600	9,413,000	21,639,330	6,457,926	28,097,256	37,510,256
	Parts List								
1.1.5.1	🕀 🕎 Vertex Electronics	1 each	1,158,400	234,600	1,393,000	3,469,800	998,870	4,468,670	5,861,670
1.1.5.2	Tracker Electronics	1 each	1,100,000	220,000	1,320,000	3,469,800	998,870	4,468,670	5,788,670
1.1.5.3	EMCAL Electronics	1 each	1,100,000	220,000	1,320,000	3,469,800	998,870	4,468,670	5,788,670
1.1.5.4	HCAL Electronics	1 each	1,100,000	220,000	1,320,000	3,469,800	998,870	4,468,670	5,788,670
1.1.5.5	🕀 😙 Muon Tracker Electronics	1 each	1,100,000	220,000	1,320,000	3,469,800	998,870	4,468,670	5,788,670
1.1.5.6		1 each	0	0	0	0	0	0	0
1.1.5.7	🕀 😭 Monitoring & Controls	1 each	200,000	40,000	240,000	577,530	164,096	741,626	981,626
1.1.5.8	🕀 🕂 Local Computing	1 each	2,000,000	500,000	2,500,000	3,712,800	1,299,480	5,012,280	7,512,280
1.1.5.9	Other Electronics	1 each	0	0	0	0	0	0	0
1.1.6	🕀 🕎 Magnet	1 each	7,687,500	1,860,250	9,547,750	5,642,201	1,920,276	7,562,477	17,110,227
1.1.7	🗄 😙 Installation	1 each	2,617,800	522,320	3,140,120	4,746,050	1,677,383	6,423,433	9,563,553
1.1.8	🗄 😙 Management	1 each	921,000	171,700	1,092,700	6,780,700	1,495,295	8,275,995	9,368,695

SiD Technical Labor Estimate - Base

Caveats

- The estimates have *not* been reviewed.
- Every time the estimates have been re-visited, errors have been found. There is *no* reason to believe the errors are gone.
- The unit costs have *no* documented basis there are no catalogs, bids, etc. (but there is some experience). There is no Basis of Estimate.

The Answer

SiD Costs by type

Some Analysis

	M&S	Labor	Totals
Base	\$263	\$73	\$336
Contingency	\$90	\$25	\$115
Total	\$353	\$97	\$451
Indirect rates	0.06	0.20	
Indirects	\$21	\$19	\$41
Totals w indirects	\$375	\$117	\$491

Total Contingency	\$115
Fraction of base=	0.25
Total Labor (inc contingency)	\$97
Fraction of base =	0.22
base defined as M&S+Labor+contingency; no escalation, no indirects	

Total in FYXXXX M\$	2005	491.2
Start Year	2011	
Construction Duration	6	years
Inflation	1.03	per year.
Factor	1.305	
Total Escalation		149.7
Total, TYM\$		641.0

Variations – R_Trkr

Variations – $Cos(\theta_{Barrel})$

Variations – HCal Thickness (Interaction lengths)

Variations – HCal Detector Gap

BR² Fixed, Vary R_{Trkr}

SiD Partials

- Already quite useful in influencing SiD choices.
- The SiD derivatives are probably not wildly wrong (but note they are fully loaded US style numbers).
- Easy to generate new ones as questions arise.

Conclusions

- The "rules" matter.
- The SiD estimate is not even version 0.
- Total costs are sensitive to the important unit costs but relation to ILC Value may be confusing.
- A lot more work is needed. Nothing has been done in LC Units.