Instrumentation and Controls 'Global Group 2' Summary

Friday, August 19, 2005 Marc Ross (SLAC), Hans Braun (CERN), Junji Urakawa (KEK)

Charge:

- identify requirements, interpret as needed and try to assess with respect to the state of the art.
 - 'Agree' on instrumentation requirements and techniques working with the area subsystem groups;
- develop control system requirements.
- This has been done before (TRC etc) but now:
 - have definition and quickening pace,
 - catching up to do
 - Need to provide strong 'feedback'.
- begin to summarize the systems and think about costs.

List of 'Decision Needed' items:

- 3 out of 41 'decisions' involve GG2 (more to come)
 - Tunnel electronics
 - To what degree is this cost effective?
 - Linac BPM's ...
 - What sort of pickup?
 - Higher Order Mode 'HOM' (accelerator cavity) BPM's
 - (also: should there be linac diagnostic sections...)

Definitions:

• Instrument

- a measuring device for determining the present value of a quantity under observation
- Diagnostic
 - the art of investigation of the cause or nature of a condition, situation, or problem

- Which best describes the role of beam monitors?
 - How to converge on requirements?

Cost

- 5 to 10% of total for various accelerator projects
 - 4% controls / 2% instrumentation in Monday's presentation
 - ~500 M\$
 - Instrumentation costs usually dominated by beam position monitoring
- Because Controls & Instrumentation will be subject to continuous attention (read effort):
 - Best performance / cost is metric not total cost
- Pace of technology:
 - 'High Availability' standards: (Advanced Telecom Computing Architecture)
 - Since Snowmass 2001

Strategy of the sessions

- Two kinds of session:
 - integrated with WG:
 - Damping Ring and Beam Delivery
 - Dedicated GG2 sessions
 - Linac BPMs (5)
 - Laser-based profile monitors
 - Feedback
 - Controls
- Rather tenuous link to WG's \rightarrow to be fixed next week?

Draft instrumentation table

~ 60% crude information available

Sections for: Intensity Position Profile (x/y & z) Special

Monitors for intensity and transverse beam position

ILC component	Required resolution / precision	Required risetime	Technology	units needed	Cost estimate/unit	Information from	Remarks	R &D requirements
Injector								
Damping ring	$10~\mu m$ / $100~\mu m$		Button ?			Tesla TDR		
Damping ring	1 μm / ?					Tesla TDR	For wiggler sections	
Linac	10 μm / 100 μm		Cavity ? re-entrant ?	736		M. Wendt GG2 talk		
Linac	1%			4			Precision intensity	
Beam delivery	5 μm / 100 μm					Tesla TDR		
Beam delivery	1 μm / 100 μm					Tesla TDR	feedback	
Beam delivery							spectrometer 1 plane	

Beam Position Monitoring

- Snowmass 2005 discussions so far:
 - Linac (quad ~few hundred, Cavity or HOM), Beam Delivery Energy spectrometer
- Key issues:
 - Resolution
 - Stability (calibration)
 - $-x \leftrightarrow y$ coupling
 - Monopole suppression
 - Dynamic range (intensity and position)
 - Multi-bunch behaviour
 - Cleaning (for cryomodule application)
 - Impedance / Aperture --
 - Gain stability (esp. for rotated pickups)
 - System performance

Beam Position Monitoring

- LINAC example:
 - 1. Requirement from WG1 (LET) \rightarrow 1 um resolution
 - Based on modeled tuning
 - 2. Requirement from GG2 $\rightarrow \sigma_x/3$, $\sigma_y/3$ (300 nm at the end of the linac)
 - Based on use of BPM as a diagnostic to identify sources of instability and as a predictor of collision overlap etc
 - Critical SLC experience with the use of beam monitors to 'predict'
 luminosity
- "Must be able to measure position with resolution less than beam size"
- GG2 recommendation: <u>Require 300 nm resolution</u>

Beam Position Monitoring - Pickup Technology

- Cavity BPM's have demonstrated best resolution by far
 - 15 nm single bunch (6e9) or 2e-6 r for C-band ;
 - This result is understood; better can be done
- Re-entrant cavities tests underway
 - < 1 um, short response decay</p>
- Striplines / buttons worldwide experience
 - ~ 1 um for 25 mm diameter
 - Calibration: 'difference of large signals'
- SCRF Cavity HOM's 1700 MHz dipole
 - 3 um resolution at TTF
- BCD \rightarrow Cavities for LET (BC to BD), buttons for DR

ATF Cavity BPM test: Move BPM in 1 um Steps

BPM RD plan:

- Is this a 'done deal'?
- *No*
 - Cavity BPM system tests \rightarrow ATF2 25 each with 100 nm expected
 - All modern (large) machines use buttons/striplines
 - Performance budget understood for large scale systems
 - (a common problem is validation of BPM readings...PEPII, TeV)
 - Quad/slotted cavity cold test (SLAC-ESA)
 - HOM tests (TTF)
 - Re-entrant cavity tests (*TTF/Saclay*)
 - Cleaning follows Nb progress…
- High resolution BPM's useful for testing mechanical/electrical subsystems (ATF2)

Beam Profile Monitoring

- Laser-based monitors for all 'damped, full current' bunch measurements
 - Secondary, traditional, devices used for tune-up.
- Complex set of issues including
 - Beamline integration (e.g. How to extract compton scattered beam)
 - Range of performance parameters
 - Laser physics ... storage cavity, standard Q-switched, mode locked
 - F# 1 optics
- Active RD by UK, KEK, DESY, SLAC groups...
- Bunch length monitors based on FEL RD (deflecting 'crab' structures, optical techniques)

Measurement of the emittance damping in the ATF damping ring using CW laserwire to measure ~5 um beams

- Repeat beam injection to the DR.
- Separately count up the signal according to the time after the injection.

60msec

1.825

1.95

50

50

1.95

Omsec

1.825

1.95

50

1.7

50msec

1.825

position [mm]

count rate [Hz/mA]

1.95

50

1.7

80msec

1.825

Yosuke Honda

Controls

- Development of BCD strategy:
 - List 'general' requirements
 - Understand 'parameterization'
 - Special requirements:
 - Remote access (international participation)
 - Machine protection
 - High Availability contribution from APS,...
 - Using telecom industry standard
 - Development of a diagnostic layer to warn of pending failure
 - Redundancy strategy for electronic/power sub-systems
- 'Cost-able' in 2006
- Focus RD effort

Role of Feedback

- TDR reliance on IP deflection may have been too much (?)
 - BPMs must be able to predict effectiveness → bunch to bunch measurements with sub-sigma resolution
 - IP deflection feedback will not work with large bunch to bunch variations ('large' relative to beam size)
- Integrated Simulations Linda Hendrickson show significant effects – not compensated by steering feedback
 - (SLC experience --- feedback never seems to work as well as in simulation)
 - Also seen in fast feedback tests (FONT-Burrows)

Single-beam studies of beamsize growth, with 5-hz feedback in LINAC and BDS.

Perfect initially, add 30 minutes "KEK" ground motion", let feedback converge -> 5% beamsize growth (380%

without feedback).

Increase energy spread for undulator (.15% end of linac; this effect needs more study!) -> 14%.

Add component jitter (25 nm BDS, 50 nm linac) -> 15%.

Add 5-Hz "KEK" ground motion -> 18%.

Add kicker jitter (.1 sigma), current jitter (5%), energy (.5% uncorrelated amplitude on each klys, 2 degrees uncorrelated phase on each klys, 0.5 degrees correlated phase on all klystrons, BPM resolution .1 um. -> 21%

Beamsize growth effects, with feedback (Linda Hendrickson)

Conclusions and Recommendations -Instrumentation

- Draft table (with ~1 iteration) \rightarrow next week
 - Requirements based on use of instrumentation for *DIAGNOSTIC and Beam Tuning* purposes
 - Anticipate real difficulties with:
 - Beam Delivery BPM/profile monitors
 - Beam phase monitors (0.03 degrees \rightarrow 65 fs)
 - Instrumentation integration
 - Feedback integration

Instrumentation RD & role of international collaboration

- KEK ATF will remain the only 'small beam' test facility for some time
- Instrumentation RD is well suited for University (i.e. small and / or independent) groups and students
 - Easy to do something interesting \rightarrow from start to finish
- Lunch seminar next Thursday
- Revitalization of the 2002 RD list

