The GLD Concept

Contents

- 1. ILC Detector requirements
- 2. GLD Concept
- 3. PFA study
- 4. Baseline design
- 5. Summary

Satoru Yamashita ICEPP, Univ. of Tokyo On behalf of GLD colleagues

Performance Goal of ILC Detectors

The best summarized in World-wide "Linear Collider Detector R&D" J.Brau et al, http://blueox.uoregon.edu/~lc/randd.ps

VXT: quark flavor tagging - Key for Higgs/top and many physics Impact Parameter resolution: ~ 5 m + 10 m / p(GeV) sin^{-3/2}

Tracker: Higgs recoil, resonances

Momentum resolution: $dp/p \sim 5 \times 10^{-5} \times p(GeV)$ (central region) $3 \times 10^{-4} \times p(GeV)$ for forward region

Angular resolution: $d \sim 2 \times 10^{-5}$ rad (for |cos |<0.99)

■For Higgs, SUSY, etc..

Jet energy resolution: $dE/E \sim 0.3 / \sqrt{E(GeV)}$

For background veto, missing energy physics

Excellent Hermeticity: down to ~ 5--10 mrad (active mask)

ILC Detector Challenges

In order to accomplish our physics goal at ILC

With respect to detectors at LHC:

Inner VTX layerVTX pixel sizeVTX materials	36 times closer to IP 1 / 30 1 / 30
Materials in TrackerTrack mom. resolution	1 / 6 1 / 10
EM cal granularity	1/200 !!

PFA (Particle Flow Algorithm) at the ILC

- Jet energy resolution is the key in ILC physics
- The best jet energy resolution is obtained by reconstructing momenta of individual particles avoiding double counting among Trackers and Calorimeters
 - Charged particles (~60%) measured by Tracker
 - Photons (~30%) by Electromagnetic CAL (ECAL)
 - Neutral hadrons (10%) by ECAL+Hadron CAL (HCAL)

→ Particle Flow Analysis

To get good jet energy resolution by PFA:

• Separation of particles (reducing the density of charged and neutral particles at CAL surface) is important for PFA :

- Fine segmentation of CAL
- •High B field
- Large CAL radius

Our view on PFA

- Fine segmentation of CAL \rightarrow (intrinsic) limits from Moliere length
- High B field \rightarrow spread hits, but not so much effective for dense jets
- − Large ECAL radius → Large Detector

GLD Concept Study

Contact persons:

H.B. park, H. Yamamoto (Asia)M. Ronan, G. Wilson (America)R. Settles, M. Thomson (Europe)

Executuve board members

S. Yamashita - Detector optimization
A. Miyamoto - Simulation/Reconstruction
Y. Sugimoto - Vertexing
H.J. Kim - Silicon Tracker
R. Settles - TPC tracker
T. Takeshita - Calorimeters
T. Tauchi - MDI
M. Thomson - Space/Bandwidth

homepagehttp://ilcphys.kek.jp/gld/index.htmlBrief documenthttp://ilcphys.kek.jp/gld/documents/glddoc/

regular TV-meeting (weekly or bi-weekly)

GLD detector concept

- 1. Large inner radius of ECAL to optimize for PFA (jet reconstruction)
 - Use fine-segmented W-Scintillator ECAL for cost efficiency
- 2. Large gaseous tracker
 - for excellent dp_t/p_t^2 and good pattern recognition
 - (e.g. efficiency for K⁰, L, and new long-lived particles)
- 3. Moderate B field (~3T)

General Advantages of Larger Detector

Good Jet Energy (Particle) Flow Measurement

Better cluster separation Good charged track separation in a jet at the inner surface of the calorimeter large BL²

- Pattern recognition is easier
 - Large n (sample)

Larger efficiency for Ks and Λ (any long lived)

- Good momentum resolution for charged particles Large BL² √ n
- Good dE/dx measurement for charged particles Large n
- Smaller relative volume of the dead space Small $\Delta V/V$

Disadvantage:

- Larger solenoid, then lower magnetic field, hence larger Si-VTX inner radius (beam bkg).
- Calorimeter volume increases (~L²) --> cheaper CAL scheme.

GLD Baseline Design (Aug'05 version)

VTX: fine pixel-CCD

15 Aug 2005

PFA Study Q. "this ECAL/HCAL concept works for PFA?"

Cell size and material can be changed easily.

Study of Particle Flow Algorithm for GLD

Simple and Robust way

Gamma Finding

Efficiency and Purity (Energy Weighted)

- Charged Hadron finding
- Eff = 84.2%, Purity = 91.2%
- Gamma Finding

Eff = 78.4%, Purity = 95.2%

 \rightarrow See talks at the PFA session on 8/22 for more details.

GLD-PFA current Performance

With reasonable segmentation ECAL 4cm x 4cm Pb/Scinti HCAL 12cm x 12cm Pb/Scinti And simple/robust algorithm

Simple way of PFA has already achieved ~ 40% resolution. Target performance is in sight

- Studies on different granularity/material(W/Scinti) are on-going.

So far, no gain with finer segmentation (under study).

Quick review of GLD current baseline design from inner to outer

- •MDI
- •Forward detectors (FCAL, BCAL)
- •Si VTX
- •Si inner tracker (IT)
- •TPC
- •ECAL
- •HCAL
- Magnet/Muon/Support

MDI Issues

- Current Study
 - $L^* \rightarrow 4.7m$ is good.
 - Shorter one under study by full-simulation
 - Crossing angle \rightarrow 0, 2mrad is OK.
 - 20mrad -- under study by full simulation
 - Pair background ? → 1st VTX radius of 20mm is OK (nominal lumi)
 - Shorter Beam timing ? → No problem (fine-pixel CCD, CAL)
 - Other studies are also on-going:
 - Neutrons, Synchrotron radiation, Muons, DID, Anti-solenoid, etc..
 → MDI session, GLD session

photon from BCAL

S.Yamashita GLD concept

Also work as a mask protecting

W/Si

- FCAL Z~2.3m

TPC from back-scattered

Coverage: down to ~5mrad W/Si or W/Diamond

BCAL Locates just in front of final Q

(No detailed design yet)

Vertex detector

- Main design consideration
 - Inner radius: avoid bulk of pair bkg.
 - Beam pipe radius: 15mm
 - Thin Layer thickness:

•GLD baseline design

- •Fine pixel CCD (20 times more pixels)
- •readout once/ train

Inner/outer radius: 20 mm / 50 mm
Angle coverage: |cos |<0.9/0.95

Goal: = 5
$$10/(p \sin^{3/2})$$
 m

S.Yamashita GLD concept

Main tracker: TPC

Advantages of TPC

- Large number of 3D sampling
 - Good pattern recognition
 - non-pointing tracks
 (V⁰ or kink particles) : e.g. GMSB SUSY
 - Good 2-hit resolution
 - Particle ID (dE/dx)

GLD Baseline design

- Inner radius: 40 cm
- Outer radius: 200 cm
- Half length: 230 cm
- Readout: ~200 radial rings

- Open questions
 - •Readout: GEM? Micromegas?
 - Material budget of inner/outer wall and end plate
 - Background hit effect on spatial resolution

• GLD conceptual design achieves the goal of $p_t/p_t^2 = 5 \times 10^{-5}$ /GeV

Current baseline design

- 3mm W + 2mm Scinti. + 1mm gap
- 33 layers, ~28 X_0 , ~1 , R_M ~18mm
- Readout
 - WS fiber +
 - MPC (Multi-pixel Photon Counter) ~ SiPM
- 4cm x 4cm tile and 1cm-wide strips
- Option: Very fine segmentation with Si for first few X₀

CAL Photon Sensor

MPC 100pixels (10x10pixels)

Hamamatsu MPC (H100) spectrum Clear peaks up to ~40 photons are observed

HCAL

- Current baseline design
 - 50 layers
 - 20mm Pb + 5mm Scinti. + 1mm gap
 - "Hardware compensation" configuration
 - ~6
 - WS fiber + MPC (SiPM) readout
 - 4cmx4cm tile and 1cm-wide strips

Option: Digital HCAL

•Open questions

Global shape: Octagon, dodecagon, or hexadecagon?How to extract cables?

Magnet

Magnet

8 m 3T superconducting solenoid Stored energy: 1.6 GJ Excellent field uniformity for TPC:

$$\int_0^{z_{\max}} \frac{Br}{Bz} dz < 2mm$$

mechanical structure

• Deformation of solenoid cryostat by CAL weight (2000t)

Cost Issues

Major cost consumers: Solenoid, HCAL, ECAL

- Solenoid
 - Cost~0.523xE(MJ)^{0.662} [PDG]~70M\$
- HCAL
 - Volume~230m³, Area (all layers)~87Mcm²
 - Cost~87M x cost/cm²
- ECAL
 - Volume~22m³, Area (all layers)~37Mcm² (2M channels)
 - Cost~37M x cost/cm² (2M x cost/readout)

Requirement for CAL granularity and cost/readout determines the cost

Summary

• GLD concept:

 Large detector aiming good jet-energy resolution, with W/scintilator base ECAL (relatively lower granularity), and moderate magnetic field (~3T).

• Preliminary study of PFA:

 Simple scheme of PFA with Full GEANT4 simulation has already achieved jet energy resolution of ~40%/sqrt(E) for ECAL having course (4cm x 4cm) segmentation. → GLD concept works.

• Track momentum resolution:

- Fine-pixcel CCD + Si-tracker + TPC $_{pt}/p_t^2 = 5 \times 10^{-5} /\text{GeV}$
- Current baseline design of GLD has been shown
 - For optimization of the design, more simulation study, sub-detector information, and especially MDI studies are essential.
 - \rightarrow The purpose of this workshop

Summary - Dimension of GLD current baseline design

reserve

Baseline detector design

 Some of sub-detectors (forward Si disks, for example) have not been seriously studied yet

GLD Target Performances for Physics

- Impact parameter: $_{b} = 5 \quad 10/(p \sin^{3/2}) \quad m \text{ (c/b-tagging)}$
- Momentum: $p_t/p_t^2 = 5 \times 10^{-5}$ /GeV (e.g. Higgs recoil mass resolution)
- Jet energy: $_{\rm E}/{\rm E} = 30\%/{\rm E}^{1/2}$
- Hermeticity: down to =5 mrad (e.g. SUSY)

Timing resolution: bunch-Identification Must also be able to cope with high densities of track and neutral cluster due to high boost and/or final states with 6+ jets, therefore require:

High granularity Good pattern recognition Good two track resolution

GLD concept: Size of the Tracker/Calorimeter is essential

Si trackers

- Role: Cover large gap between
 TPC and VTX → Si Inner Tracker (IT)
 TPC and endcap ECAL → Si Endcap Tracker (ET)
 - to get better
 - Track finding efficiency
 - Momentum resolution
 - Track-cluster maching in ECAL (PFA)
- Design optimization
 - Number of layers and their position
 - Wafer thickness
 - Strip or pixel? for the very forward region

Geometry in full simulator(JUPITER)

