

ILC : PHYSICS SCENARIOS

1. Introduction

– Physics base and exp instruments

- **2.** ILC Physics Targets in Micro-Universe
 - Electroweak Symmetry Breaking
 - Supersymmetry
 - Extra Space Dimensions
- **3.** Cosmology Connection
- **4.** Conclusions

1. INTRODUCTION

HIGH ENERGY PHYSICS: tremendously successful in creating and establishing
<u>STANDARD MODEL OF PARTICLE PHYSICS</u>

Open problems and new questions at short distances ...

- Mechanism of electroweak symmetry breaking
- Unification of forces including gravity
- Space-time structure at short distances

... and large distances

- Connection with cosmology

- \Leftarrow Higgs or alternative?
- \Leftarrow Supersymmetry?
- \Leftarrow Dimensions > 4?

\leftarrow CDM, n_B , ...?

 \Leftarrow Lykken

<u>Expectation</u>: Machines of the next generation will reach experimental solutions of these fundamental problems of nature

LHC breakthrough discoveries: – Higgs mechanism

- supersymmetry
- extra space dimensions

 $\begin{array}{c|c} ILC \\ add. & discoveries and analyses of precision measurements \Rightarrow \\ \hline unraveling underlying laws of nature \end{array}$

- √s up to 500 GeV : light Higgs / light SUSY / top quark / ...
 up to 1 TeV : strong SB / heavy SUSY / extra dimensions / ...
- exp tools: polarization of $e^{-}[e^{+}]$ beams [\leftarrow utilizing full precision potential
 - $\ GigaZ \ mode \qquad \qquad [\leftarrow ult \ picture \ of \ elw \ sector$
 - $-e^-e^- \mid e\gamma \text{ and } \gamma\gamma \qquad \qquad [\leftarrow \text{unique complements}]$

HIGGS MECHANISM : EXP DISCOVERY PATH

a)

b)

5

HIGGS MECHANISM : EXP DISCOVERY PATH

(1) LHC/Tevatron: discover SM Higgs

first analysis steps: Higgs mass $[10^{-3}]$ couplings: ratios

(2) ILC : clean sample of Higgs events

Higgs-strahlung : $e^+e^- \to ZH$ WW fusion : $e^+e^- \to \nu\nu H$

Higgs profile: mass, spin, ...

<u>couplings</u> : generation of mass Higgs field in vacuum

ILC HIGGS ANALYSIS

Higgs couplings / mod.independent

 $M_H < 140 \text{ GeV rich: } Z, W, t, b, c, \tau$ $M_H > 140 \text{ GeV red.: } Z, W, t$

- \Rightarrow production cross sections
- \Rightarrow decay branching ratios
- \Rightarrow Higgs radiation off top

ILC HIGGS ANALYSIS

Higgs couplings / mod.independent

 $M_H < 140 \text{ GeV rich: } Z, W, t, b, c, \tau$ $M_H < 140 \text{ GeV red.: } Z, W, t$

Higgs coupling – mass relation:

$$g(Hpp) = \sqrt{2\sqrt{2}G_F} \, m_p$$

 proving mass generation by interaction with Higgs field

ACFA LC Study

ILC HIGGS ANALYSIS

Higgs couplings / mod.independent

Higgs coupling – mass relation:

$$g(Hpp) = \sqrt{2\sqrt{2}G_F} \, m_p$$

Higgs potential

$$V = \frac{1}{2}M_H^2 + \frac{1}{2}\frac{M_H^2}{v}H^3 + \frac{1}{8}\frac{M_H^2}{v^2}H^4$$

 $H^3 \Rightarrow$ non-zero vacuum Higgs field: measurable to 10% accuracy for $M_H < 140 \text{ GeV} [> \text{SLHC}]$ \Rightarrow medium for mass generation

SUSY HIGGS BOSONS

Higgs sector extended to 2 doublets \Rightarrow 5 physical particles in MSSM :

 h^0 light ≤ 140 GeV H^0, A^0, H^{\pm} typically v to 1 TeV

detection at LHC: tot / wedge

SUSY HIGGS BOSONS

Higgs sector extended to 2 doublets \Rightarrow 5 physical particles in MSSM :

 $h^0 \text{ light} \le 140 \text{ GeV}$

 H^0, A^0, H^{\pm} typically v to 1 TeV

detection at LHC: blind wedge

ILC: pairs /w mass up to E_B

[Desch ea]

SUSY HIGGS BOSONS

Higgs sector extended to 2 doublets \Rightarrow 5 physical particles in MSSM :

 $\frac{1}{h^0} \text{ light} \le 140 \text{ GeV}$ $H^0, A^0, H^{\pm} \text{ typically } v \text{ to } 1 \text{ TeV}$

detection at LHC: blind wedge

 $\underline{\gamma\gamma \rightarrow H, A: 30\%}$ [Mühlleitner ea, Gunion ea, F: Niezurawski ea]

• LITTLE(st) HIGGS

 $\begin{array}{l} Higgs \ \Leftarrow \ Goldstone \ boson \\ \text{to SB of large symmetry group} \\ \\ \text{rich spectrum of new particles } O(\text{TeV}) \ + \\ \underline{\text{pseudoscalar}} \ \eta : \ e^+e^- \rightarrow t\bar{t} \ \eta \ \mid \eta \rightarrow b\bar{b} \end{array}$

F: Kilian, Rainwater, Reuter

LITTLEst HIGGS

 $Higgs \leftarrow Goldstone \ boson$ to SB of large symmetry group

rich spectrum of new particles $O({\rm TeV})$ +

pseudoscalar
$$\eta: e^+e^- \to t\bar{t}\,\eta$$

 $\eta \to b\bar{b}$

<u>parameters</u>: $e^+e^- \to f\bar{f}$ and Zhalmost completely covered

masses known from LHC :

ILC determines model specific cplgs \Rightarrow

F: Conley, Hewett, Le

LITTLE HIGGS

 $Higgs \leftarrow Goldstone \ boson$ to SB of large symmetry group

LITTLE HIGGS

 $Higgs \leftarrow Goldstone \ boson$ to SB of large symmetry group

• <u>WZ RESONANCE</u>

Higgsless models in Extra Dimensions \Rightarrow formation of WZ resonance

$$\frac{\text{processes}}{e^+e^-} \to \nu e + WZ$$
$$e^+e^- \to W + WZ$$

LHC \Rightarrow mass | ILC \Rightarrow spin and couplings

COMMENTS: Precision in Higgs Sector

coupling ZZH to 1% \Rightarrow New Physics scales probed up to 3 TeV coupling HHH to 10% \Rightarrow New Physics Higgs scales probed up to 1 TeV

 \Leftarrow not necessarily accessible directly at LHC

SUSY Higgs physics:

MSSM quantum loop relations:

Higgs mass : $\delta m_h = 50 / 500 \text{ MeV}$ top mass : $\delta m_t = 100 \text{ MeV}$

- $\Rightarrow \text{ new parameter determination}$ [Higgs-stop-stop cplg, M_A , ...]
 - F: Heinemeyer, Hollik, Weiglein

COMMENTS: Precision in Higgs Sector

coupling ZZH to $1\% \implies$ New Physics scales probed up to 3 TeV coupling HHH to $10\% \implies$ New Physics Higgs scales probed up to 1 TeV

 $\Leftarrow not necessarily accessible directly at LHC$

Complexity in Higgs Sector

Little Higgs, ...

SUSY: non-min scenarios [gut, string, ...] : $N \ge 7$ Higgs fields ...

 $\Leftarrow e^+e^-$ exp with well defined kinematics, resolve and analyze such complex phenomena

SUMMARY / HIGGS

■ In standard scenarios of electroweak symmetry breaking [SM, MSSM] ILC provides a comprehensive and high-resolution picture of mass generation – adequate for this fundamental mechanism

■ In non-standard scenarios of electroweak symmetry breaking [ext SUSY,...] phenomena are so complex that ILC clearly necessary to resolve the microscopic picture

0

2B. SUPERSYMMETRY

Fundamental symmetry with potential impact across all micro-areas plus cosmology:

- generating and stabilizing light Higgs boson
- strongly supporting unification of gauge couplings / paving path to gravity
- providing candidate particle for Cold Dark Matter component

<u>MASS SCALE</u> : no firm prediction

LE data + CDM : preference (slight) for low mass spectrum

2B. SUPERSYMMETRY

Fundamental symmetry with potential impact across all micro-areas plus cosmology:

- generating and stabilizing light Higgs boson
- backing unification of gauge couplings / paving path to gravity
- providing candidate particle for Cold Dark Matter

<u>MASS SCALE</u> : no firm prediction

LE data + CDM : preference (slight) for low mass spectrum

discovery sensitivity: 2.5 to 3 TeV [early 10 fb⁻¹: 1 to 1.5 TeV]

LHC

main source: <u>cascade decays</u>: $\tilde{q} \to q \, \tilde{\chi}_2^0 \to q \, (\tilde{\ell}\ell) \to q \, (\ell\ell) \, \tilde{\chi}_1^0$

a) not all non-colored light particles i.g. detected
b) invariant masses ⇒ edges ⇒ particle mass [-differences]
masses strongly correlated [with invisible lightest neutralino]

main source: <u>cascade decays</u> : $\tilde{q} \to q \, \tilde{\chi}_2^0 \to q \, (\tilde{\ell}\ell) \to q \, (\ell\ell) \, \tilde{\chi}_1^0$ $\frac{\int^{q_1}}{\tilde{q}_1} \int^{\ell_2^+}_{\tilde{\ell}_1} \int^{\ell_1^+}_{\ell_1^+} \int^{\ell_1^+}_{\tilde{\ell}_1^+} \int^{\ell_1^+}_{\ell_1^+} \int^{\ell_$

a) not all non-colored light particles i.g. detected

LHC

 \downarrow

Ш

b) invariant masses \Rightarrow edges \Rightarrow particle mass [-differences] masses strongly correlated [with invisible lightest neutralino]

determines the essential light non-colored part of spectrum:

- $\Rightarrow\,$ climbing up LHC chain: entire susy world reconstructed
- \Rightarrow precision measurements of particle properties:

particle mass, spin, q-number, wave-function, couplings

20

MASSES at ILC

a) Edge effects:
$$\tilde{\mu}_R \rightarrow \mu + \tilde{\chi}_1^0$$

 $m_{\tilde{\ell}} = \sqrt{s} [E_+ E_-]^{\frac{1}{2}} / (E_+ + E_-)$
 $m_{\tilde{\chi}_1^0} = m_{\tilde{\ell}} [1 - 2(E_+ + E_-) / \sqrt{s}]^{\frac{1}{2}}$
F: Martyn
precision on χ_1^0 increased by $\sim 10^2$

b) Support by e^+ and e^- polarization: $e^+e^- \rightarrow \tilde{\mu}_R^+ + \tilde{\mu}_R^- \rightarrow \mu^+\mu^- + E_{miss}$ $e^+e^- \rightarrow \tilde{\mu}_L^+ + \tilde{\mu}_L^- \rightarrow \mu^+\mu^- + E_{miss}$ $WW \rightarrow \mu\mu$ bkgd hel suppr.

F: Nauenberg ea

MASSES at ILC

a) Edge effects:
$$\tilde{\mu}_R \rightarrow \mu + \tilde{\chi}_1^0$$

 $m_{\tilde{\ell}} = \sqrt{s} [E_+ E_-]^{\frac{1}{2}} / (E_+ + E_-)$
 $m_{\tilde{\chi}_1^0} = m_{\tilde{\ell}} [1 - 2(E_+ + E_-) / \sqrt{s}]^{\frac{1}{2}}$
F: Martyn
precision on χ_1^0 increased by $\sim 10^2$

b) Support by e^+ and e^- polarization: $e^+e^- \rightarrow \tilde{\mu}_R^+ + \tilde{\mu}_R^- \rightarrow \mu^+\mu^- + E_{miss}$ $e^+e^- \rightarrow \tilde{\mu}_L^+ + \tilde{\mu}_L^- \rightarrow \mu^+\mu^- + E_{miss}$ $WW \rightarrow \mu\mu$ hel suppr. \Rightarrow

F: Nauenberg ea

MASSES at ILC

a) Edge effects:
$$\tilde{\mu}_R \rightarrow \mu + \tilde{\chi}_1^0$$

 $m_{\tilde{\ell}} = \sqrt{s} [E_+ E_-]^{\frac{1}{2}} / (E_+ + E_-)$
 $m_{\tilde{\chi}_1^0} = m_{\tilde{\ell}} [1 - 2(E_+ + E_-) / \sqrt{s}]^{\frac{1}{2}}$
F: Martyn
precision on χ_1^0 increased by $\sim 10^2$

c) <u>Threshold excitations:</u>

$$e^+e^- \rightarrow \tilde{\mu}_R^+ + \tilde{\mu}_R^- \rightarrow \mu^+\mu^- + E_{miss}$$

P-wave: slow β^3 rise

$$e^-e^- \rightarrow \tilde{e}_R^- + \tilde{e}_R^- \rightarrow e^-e^- + E_{miss}$$

S-wave: fast β rise [imp ~ 3]

Feng, Peskin | F: Freitas ea

Summary [Allanach ea]:		Mass, ideal	"LHC"	"ILC"	"LHC+ILC"
	$\tilde{\chi}_1^{\pm}$	179.7		0.55	0.55
LHC+ILC	$\tilde{\chi}_2^{\pm}$	382.3	_	3.0	3.0
	$ ilde{\chi}_1^0$	97.2	4.8	<u>0.05</u>	<u>0.05</u>
Joherent LHC+ILC	$ ilde{\chi}^0_2$	180.7	4.7	1.2	0.08
analyses completed /	$ ilde{e}_R$	143.9	4.8	0.05	0.05
resolution increased	${ ilde e}_L$	207.1	5.0	0.2	0.2
significantly	$ ilde{ u}_e$	191.3	_	1.2	1.2
	$ ilde{\mu}_R$	143.9	4.8	0.2	0.2
# SFITTER	$ ilde{ au}_1$	134.8	5-8	0.3	0.3
Lafaye, Plehn, Zerwas.D	$ ilde{ au}_2$	210.7	_	1.1	1.1
	$ ilde q_L$	570.6	8.7	—	4.9
# FITTINO	$ ilde{t}_1$	399.5		2.0	2.0
Bechtle, Desch, Wienemann	$ ilde{t}_2$	586.3		—	
	\tilde{g}	604.0	8.0	_	6.5
\mathcal{SPA} Project	h^0	110.8	0.25	0.05	0.05

399.4

 A^0

1.5

1.5

+ Benchmarks

LHC

SF

FI'

SPIN at ILC

a) LHC: spin correlations

SPA-chain / spin corr : inv masses distorted $[\ell^+ jet]$ diff $[\ell^- jet]$ distribution: not p specific

 $difficult \ analysis \quad {\rm F: \ Barr} \Rightarrow$

b) <u>ILC: angular distribution</u> production angle : $e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^$ rec. from $\mu^+\mu^- + E_{miss}$ <u>asymptotically $\rightarrow \sin^2 \beta$ </u> F: Martyn

COUPLINGS ... at ILC

q-numbers / mixings

Moortgat-Pick Rpt

- e^- polarization crucial for analysis
- e^+ polarization increasing accuracy
 - crucial in some scenarios :

SUMMARY / SUSY

- 1. LHC/ILC: complementary coverage of susy particle spectrum
- 2. prim.ILC: precise profile of particles \Rightarrow SUSY exp proven!

EXTRAPOLATION TO GUT SCALE

High-precision measurement of SUSY Lagrangian parameters \Rightarrow

Extrapolation to high scale [RGE]: • reconstruction of fundamental theory $\sim \Lambda_{Pl}$ • exploration of microscopic SUSY breaking symmetries/universal behavior at Λ_{Pl} ? impact of high-scale physics? Program in parallel to Proton decay and related phenomena Neutrino physics – e.g. see-saw mechanism Cosmology / early times

> picture coarse \Rightarrow HEP SUSY addition highly valuable to reconstruct Planck scale scenario

GAUGE COUPLINGS

Evolution:present elw/strong gauge couplings \oplus SUSY threshold corr ~ LHC

Grand Unification : ~ $2\sigma / g^U : 2\%$ Δ_3 at 8σ level : high sc phys

 $\frac{\text{GigaZ}}{\oplus}: \Delta s_W^2 / \alpha_s \leq 10^{-5/-3}$ $\oplus \text{ILC completed}$ $\Delta_2 \text{ at } 8\sigma \text{ level : high sc physical set}$

	Present/"LHC"	${ m GigaZ}/"{ m LHC+LC"}$		
M_U	$(2.36\pm0.06)\cdot10^{16}~{ m GeV}$	$(2.360 \pm 0.016) \cdot 10^{16} \mathrm{GeV}$		
αU^{-1}	24.19 ± 0.10	24.19 ± 0.05		
$\alpha_3^{-1} - \alpha_U^{-1}$	0.97 ± 0.45	0.95 ± 0.12		

UNIVERSALITY : MASSES AND SUSY BREAKING

 $\underline{\text{Evolution}}$:

Gaugino / scalar masses

universal in mSUGRA

F: Allanach, Blair, Porod, ea

Scalars in GMSB

evolution distinctly different \Rightarrow

- Micro-picture of SUSY breaking
- *GUT/Pl physics scenarios*

INTERMEDIATE SCALE : Z' BOSON

m_{Z'} [TeV]

Heavy Z' vector boson motivated by TeV scale remnants of grand unified theories, string theories etc

Examples : Z' in SO_{10}, E_6 : LHC : $M_{Z'}$ up to ~ 5 TeV ILC : virtual extension up to 15 TeV Z' couplings to fermions etc Riemann.S $e^+e^- \rightarrow f\bar{f}$ L=1 ab⁻¹, P=0.8, P=0.6 0.5 case B $\sqrt{s=0.5}$ TeV: **δ** χ $\sqrt{s=0.8}$ TeV: $\sqrt{s=1.0 \text{ TeV}}$: 0.25 LHC: 10 fb⁻¹ 100 fb⁻¹ ----χ LR 0 -0.25 η TeV, m_{z'} = 1.5 TeV eV. m_{z'} = 2.0 TeV LR TeV, m₋₇ = 1.5 TeV -0.5 TeV, m_{z'} = 3.0 TeV 15 200 5 10 -0.4 -0.2 0.2 0.4 0

a',

INTERMEDIATE SCALE : SEE-SAW IN ν PHYSICS

Example : neutrino mass generated by see-saw mechnism \Rightarrow

<u>intermediate see-saw scale</u> $M[\nu_R] \sim 10^{10}/10^{14}$ measurable? "qualified yes"

Seesaw-scale affects evolution of $\tilde{\tau}/\tilde{\nu}_{\tau}$ masses in third generation :

STRING EFFECTIVE THEORIES

<u>Scenario</u> : string effective theory :: heterotic string / orbifold compactification

scalar Masses (n-univ): $M_{\tilde{j}}^2 = m_{3/2}^2 [1 + n_j \cos^2 \theta] + \dots (n_j \text{ integ})$

"SUSY Chew-Frautschi Plot"

 \Leftarrow stringent test of integer modular weights

2C. EXTRA SPACE DIMENSIONS

2C. EXTRA SPACE DIMENSIONS

essential element: gravity extends to higher dimensions

RS: warped geometry : curvature k

 $k/\overline{M}_{pl}\sim 0.1$

. . .

Many other phenomena:

 high precision analysis of mixing between KK states and standard states

[vector bosons, fermions, ...]

- mixing of scalar radion field with Higgs field
- spin measurements of KK states

3. COSMOLOGY CONNECTION

<u>Focus</u>: mechanism of baryon asymmetry $\rho_B = 4.0 \pm 0.4\%$

particle character of CDM $\rho_{cdm} = 24 \pm 4\%$

- <u>LEPTOGENESIS</u> : CP violation in heavy ν_R sector
 - \Leftarrow mass determination $M[\nu_R]$
- <u>SUPERSYMMETRY</u>: 1st phase transition: light \tilde{t}_R and Higgs mass

 $\Leftrightarrow \text{ window left by LEP [Higgs < 120 GeV]}$ and Tevatron $[\tilde{t}_R < top]$

 \Leftarrow ILC : near degeneracy \tilde{t}_R and $\tilde{\chi}_1^0$ Carena ea

 \Leftarrow Feng

33

Cold Dark Matter

Many candidate particles in various theoretical approaches \Rightarrow CDM = mixture of different components / complex structure ?

- supersymmetry: lightest neutralino \Leftarrow

gravitino

- extra dimensions: KK states, ...

• <u>NEUTRALINO CDM</u>:

area in mSUGRA param \sim octopus [most areas very difficult to control at LHC]

ILC: systematics : LCC collaboration

 \Leftarrow

[Bambade ea; Martyn; Baer ea]

LCC2 focus point \Rightarrow

Cold Dark Matter

Many candidate particles in various theoretical approaches \Rightarrow CDM = mixture of different components / complex structure ?

– supersymmetry: lightest neutralino gravitino

• <u>NEUTRALINO DM</u>:

LCC2 focus point: $\tilde{\chi}\tilde{\chi} \to WW, ZZ$

 Ω_{χ} depdg on mass differences: $\tilde{\chi}_1^{\pm} - \tilde{\chi}_1^0 = 51.7 \pm 0.3 \text{ GeV}$

 $\Omega_{cdm}h^2 = 0.109 \pm 3.5\%$

 $WMAP \rightarrow Planck \exp: 10\% \rightarrow 2\%$

<u>Comment</u>: galactic γ spectra EGRET: excess over conventionally expected yield de Boer ea candidate : $\tilde{\chi}\tilde{\chi} \rightarrow bb \rightarrow \pi^0 \rightarrow \gamma \Rightarrow M_{\chi} \sim 50$ to 100 GeV | $M_{scal} \sim 1$ TeV conclusion dep crucially on conventional bkgd: under sufficient control? GLAST: $\chi\chi \rightarrow \gamma\gamma$ model-independent endpoint-peak : exp decisive

GRAVITINO CDM:

Feng ea, Buchmüller ea, Hamaguchi ea, Ellis ea

 \tilde{G} lightest supersymmetric particle : GMSB ~ MeV or less SUGRA ~ 100 GeV

<u>lifetime NLSP</u>: $\tau[\tilde{\ell} \to \ell + \tilde{G}] = const \times M_{\tilde{G}}^2 M_{Pl}^2 / M_{\tilde{\ell}}^5$

GMSB : microscopic but possibly visible decay length SUGRA: macroscopic lifetime [up to months!]

 \Rightarrow suggesting special experimental efforts to catch the long-lived sleptons and to measure [later] their decay properties

• <u>GRAVITINO CDM</u>:

 \tilde{G} lightest supersymmetric particle : GMSB ~ MeV or less SUGRA ~ 100 GeV

<u>lifetime NLSP</u>: $\tau[\tilde{\ell} \to \ell + \tilde{G}] = const \times M_{\tilde{G}}^2 M_{Pl}^2 / M_{\tilde{\ell}}^5$

GMSB : microscopic but possibly visible decay length SUGRA: macroscopic lifetime [up to months!]

 $\begin{array}{ll} \underline{\text{SUGRA program}}: & -\max \tilde{\ell} \text{ from track in detector: } e^+e^- \to \tilde{\ell}\tilde{\ell} \\ & -\max \tilde{G} \text{ from decay of stopped } \tilde{\ell} \to \ell \tilde{G} \\ & - \text{ lifetime from stopped } \tilde{\ell} \text{ decay} \\ & - \sup S[\tilde{G}] = 3/2 \text{ from rad decay distributions} \end{array}$

Super-gravity : Planck mass can be determined from $\tilde{\ell}$ lifetime

Particle Physics – Cosmology strategy

- **1.** Establish cold dark matter particle at LHC
- 2. Determine its profile and nature in precision ILC experiments
- **3.** Predict Cold Dark Matter Density [and search experiments]
- 4. Use as tool for mapping CDM distribution in Universe
- \Rightarrow matching of high energy physics and astrophysics/cosmology

4. SUMMARY

ILC can contribute uniquely to solutions of key questions in physics ...

<u>Electroweak Symmetry Breaking</u>: establish Higgs mechanism *sui generis* for generating mass

Extra Space Dimensions: basic questions: Λ_{Pl} and #Dnew states, mixing of SM world with new world

Cosmology Connection:

n: determine properties and interactions of CDM particle: establishing CDM nature and tool for mapping CDM structure of Universe

... and lead us to unravel the underlying laws of nature