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OVERVIEW
N

e DETERMINE GOALS

o IDENTIFY IMPORTANT EXPERIMENTS
e SEEK COLLABORATORS

e CHALLENGES AND TASKS

e GINZBURG PROPOSALS

e THEORY OF t DECAY



SUGGESTED GOALS
.

e Ascertain the level of interest within both the high energy
and medium energy physics communities in operating
fixed target experiments at the ILC.

e Provided that the interest is high, work to establish fixed
target experimental halls at the end of the spent electron
and positron beamlines, or a special electron beamline as
proposed by TESLA-N.

e Provide high energy test beams for such uses as detector
development and optimization of Compton backscattering
for the ILC Gamma-Gamma Collider Option.



SUGGESTED GOALS

(cont’d)
]

e Determine and minimize the construction and
operating costs associated with a fixed target
program.

e Involve colleagues from developing countries in
both sharing the costs of and playing leadership
roles in fixed target experiments.

e Run successful fixed target experiments at the
ILC that will test the Standard Model to
unprecedented levels of precision.



IDENTIFY IMPORTANT EXPERIMENTS
.

e High Precision Mgller scattering
e‘e ->e-e- Y. Kolomensky

e Lepton Flavor Violation in
e "N->1+X S. Kanemura

e Photoproduction of Charm & Bottom
vyp->cc(bb)+X W. Johns, J. Cumulat

e Precision Studies of Polarized T Decay
yp->ttt +X S. Mtingwa, M. Strikman



IDENTIFY IMPORTANT EXPERIMENTS
(cont’d)

e Neutrino Factory l. Ginzburg

e Accelerator-Driven Subcritical Fission Reactor
l. Ginzburg

e Gluon Contribution to Nucleon Spin Structure
e yp -> to3jets
Probes in a clean way the three quark

component of the proton wavefunction.

L. Frankfurt and M. Strikman
Phys.Rev.D67:017502,2003



SEEK COLLABORATORS
FROM THE FOLLOWING:

e Proposed experiments like TESLA-N
Polarized e - on polarized targets

e Current experiments, e.g..
- COMPASS @ CERN (muon and hadron beams)
e Transverse spin structure of nucleons
e Run will resume in 2006
- HERMES @ DESY (polarized e - on polarized target)
e Transverse Spin structure of nucleons
e Run2 2001-2007

e Former highly successful experiments, e.g..
- Mogller scattering, SLAC E158
- FOCUS experiment at Fermilab



SEEK COLLABORATORS
FROM THE FOLLOWING:
(cont’d)
]

e Excellent unfunded experiments like
- BTeV - High sensitivity studies of B decays
- CKM - Study of rare decay K*-> n* vv
- Similarly in other geographic regions

e Those who don’t want to join huge ILC collaborations

e Medium energy physics community



CHALLENGES AND TASKS
.

e Organization of Fixed Target Initiative
e Accelerator/Beamline specifications

e Laser specifications

e Detector designs for first experiments
e Accelerator/Laser/Detector interfaces



ORGANIZATION
_

e (Initial) Co-Chairs: Yury Kolomensky and Sekazi Mtingwa

e Experimental Coordinator: Yury Kolomensky
— Liaison to Global Group 6 (Telnov, Parker et al.)

- ldentify Assistants from all geographic regions: Rainer
Pitthan, etc.

- Critique accelerator and laser specifications of proposed
experiments (Ask right questions)

e Theory and Phenomenology Coordinator: Shinya Kanemura
-~ Mark Strikman
- llya Ginzburg
- Sekazi Mtingwa
— lIdentify others



ORGANIZATION
(cont’d)

e Laser Coordinator: Jeff Gronberg
Identify others from all geographic regions

e Photoproduction Coordinators
- Will Johns
- John Cumulat
- ldentify others from all geographic regions



ORGANIZATION
(cont’d)
S

e TESLA-N Coordinator(s)
e T Physics Coordinator

e Beamline Design

- Rob Appleby, Daresbury Laboratory
— Yuri Nosochkov, SLAC

e Cost Optimization — SLAC



ORGANIZATION

(cont’d)
]

e Overall Communication and Logistics

Sekazi Mtingwa

e Web Master
e Regional Coordinators

North America: Yury Kolomensky, USA

South America: Joao dos Anjos, Brazil

(not confirmed but interested)

Asia:

Europe:

Africa: Zeblon Vilakazi, South Africa

Central America/Caribbean: Hector Mendez, Puerto Rico



BEAMLINES
N

e Design beamlines after polarimeter,
including beam dumps.

e Reduce momentum spread of disrupted
beam to a usable value.

e Refocus disrupted electron beam to a
suitable spot for both Compton
backscattering and direct e- on target.



:?f SLAC Style

SLAC-PUB-8570; arXiviphysics/0101070
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X, S

Beyond the Disrupted Beam?

Since it only needs one beam, Meller Scattering is also
considered fo be a good start-up/fune-up dedicated
experiment. But does Fixed Target Physics at the
NLC in general work with a disrupted beam?

Forl%EO GeV 57% of disrupted beam is within AE/E

Assume 45% efficiency™ = 120 Coulomb in 9 month
Summary:

Use of disrupted beams is possible - if energy
colhlrr\aﬂon can be solved and de-polarization is
small....

*SLC experience!

18 Machine-Detector Interface @ ILC, SLAC, Jan 6-8, 2005 Rainer Pitthan




< 2

Disrupted Beam:
Can You Fix the Energy Spread?

Energy Collimation: Possible,
but needs dES'Q” effort Disrupted Beam 500 GeV cms

=

Long energy tails of
particles.

At 250 GeV per beam, for
AE/E =1%, 1.6 MW have to
be collimated.
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CHALLENGES & TASKS

(cont’d)
]

e Specify laser system, although not as
challenging as for gamma-gamma collider.

J. Gronberg is laser expert.

e Avoid data pile-up on target by rastering the
electron beam, where necessary.

e Determine how many of the 10° photons per
Compton backscattering can be used at 10kHz
rep rate of the electron bunches.



BACKGAMMON

Phys Rev Lett. 64, 1522 (1990) Mtingwa and Strikman
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FOCUS @ FNAL
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COMPARISON OF BACKGAMMON AND FOCUS

FOCUS BACKGAMMON
Rep Rate 1/60 sec 10 kHz
Hot y’s/bunch 4 x107 106
Seconds/yr 3 x107 3 x107
Target int. length 10% 10%
Hadronic int/e*e- 10-3 10-3
Branch. Ratiotobb 2 x 10 2 x 104

b b/year 4 x 10° 6 x 10°



CHALLENGES & TASKS
(cont’d)

e Examine utility of using empty buckets
between positron trains a la TESLA-N.



TESLA-N

Advantages of using the e+ Arm?

*  One advantage is the ecase of interleaving Collider
Bunches with Fixed Target Bunches. The “opposite
charge option” allows separation between the main
beam and eN-experiment beams by a simple splitter
magnet.
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TESLA-N
(cont’d)

Filling the Empty Buckets

« Duty cycle advantage: by filling the empty 440 buckets
between the 2830 e+e- Lunches with a very low charge
(~2 10%c are proposed), a 0.5 % duty cycle beam for
coincidence experiments is being created. This
increases the beam loading by only 0.04%.

« The physics proposed is an extension of the HERMES
physics, and, therefore, is geared toward needing a
good duty cyele.

440
LA ATA A
Qe+ ~ eN
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CHALLENGES & TASKS

(Cont’d)
]

e Determine whether spent gamma-gamma
beams can be used for high quality
experiments.

e Compare coherent Bremstrahlung with
Compton backscattering for producing
hot polarized gammas.



Polarized physics with real photons

E_elec=500.0 GeV, k_peak=200.0 GeV E_elec=500.0 GeV, k_peak=350.0 GeV
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Proposals on
- Beam—Dump
Utilization for Linear
Collider

Ilya F. Ginzburg
Sobolev Inst. of Mathematics, SB RAS.

Novosibirsk

How to work with beam dump?
Standard approach: destruction.
Proposal: = utilization for technics and physics.




[. Initiation of an accelerator—
driven sub—critical reactor

The idea to work with sub-—critical nuclear re-
actor, initiated by proton or electron beam, for
foolproof production of energy and {or) clean-
ing of nuclear poliution is well known (Rubbia}.
Here proton or electron beam with particle en-
ergy of about 1 GeV is suggested to produce
neutrons in the cascades within body of reac-
tor. The problem here is in obtaining necessary
beam power Of about 5 MW or larger.

For definiteness, in TESLA project we expect
mean used beam power about 11 MW with elec-
trons or {and) photons having energies of about
hundreds GeV. In the suitable target this par-
ficle energy can be transmitted to low energy
particles to initiate fission process in reactor.



II. Neutrino factory

v PP
— v = &2 NBD }=-=— FDD

200 km

A. Pion producer (PP) — water cylinder of length
about 20 cm (radiation length). Here electrons
produce photons via bremsstrahlung, and than
these photons (or direct photons) produce pions
via yN — ... N

B. Neutrino transformer (NT) — low vacuum
pipe of length 1-5 km and radius about 2m for
m — pr decay with 0.6 - 1011 »/s and angular
spread 2+ 0.4 mrad. 1+ 2 events v, N — uX

C. Nearby detector (NBD) at 1.1-10km after
NT — for estimates: water of length 100m with
radius 2-10 m. — 1 = 100 events v, — pX /sec
D. Far distance detector (FDD) at the distance
L = 100 = 200 km: water of length 1 km with
radius about 40 m with ~ 100 = 1000 events
vr N — 7 X /year from v, — v+ oscillations (twice
larger than background).



THEORY OF  DECAY

A. Pich, Workshop on t/c Factory
AIP Conf Proc, 349, p. 45 (1996)

Let us consider the leptonic decays I~ —s 1;’~ s, where the lepton pair (1,1 IJ'
may be (s, e), (7, e),or (r, n). The most general, local, derivative-free, leptor

. - - - - = * - - s
number consérving, four-lepton interaction Hamiltonian, consistent with loca
ity and Lorentz invariance , ' '
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where 8 is the angle between the [~ sﬁin and the final charged-lepton momé-_:n—

i ) i e . -
tum, w = (mj + m?)/2m; is the maxxmum I'” energy for massless neutrinos,
z = I;—/w is the reduced energy-and zo = mpr/w. For unpolarized I's, the

distribution is characterized by thle so-called Michel [17] parameter p and the
low-energy parameter 7. Two more parameters, £ and § can be determined
when the initial lepton polarization is known. If the polarization of the final
charged lepton is also measured, 5 additional independent parameters [3] (&,
£, n", o, B’) appear. | -



PRECISION STUDIES OF MICHEL PARAMETERS
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BIG THANKS!
(G

e MARK OREGLIA
e ED BERGER

THEY HAVE GIVEN US ENCOURAGEMENT TO
PURSUE THIS INITIATIVE AND SEE IF WE COULD
DEVISE A HIGH QUALITY PROGRAM OF FIXED
TARGET EXPERIMENTS.

We want to become a real ILC Working Group!



