

ILC Laser-wires

G A Blair, RHUL Snowmass 17th August 2005

- Introduction
- Energy regimes
- Signal Extraction
- Scanning techniques
- Laser requirements
- Light delivery
- Summary

LW at damping ring

Compton photon spectrum for TTF2, ATF, and PETRA

TTF2 (10 μ m, 1 GeV), ATF (5 μ m, 1.25 GeV), and PETRA (10 μ m, 4.5 GeV) Beam (electron beam size, beam energy)

Laser: wavelength 532 nm, 20 MW peak power, and 5 µm spotsize at IP

Compton photon energies

17 August 2005. Snowmass

LW after LINAC (CLIC Energies here)

Compton Electrons

Compton Photons

Laserwire Simulation (CLIC)

Damping Ring

- Could use ATF-style CW laser-wire or a pulsed system.
- Curvature of ring makes extraction of photons easier.
- If a dog-bone solution signal extraction in the straight sections would be problematic
- Lower energy photons some problems with background are likely (cf ATF)

Linac

- Would need a pulsed system
- Probably don't want extra chicanes (?)
- Could use degraded Compton electron signal not optimal for accuracy.
- Also confusion as to which location gives rise to the signal. This would limit the number of lw stations in the linac.

BDS

- Would need a mode-locked pulsed system
- Will need a chicane for signal extraction
- Best to use Compton photons for signal
- Intra-train emittance measurement is a goal.
- Best to avoid the collimation region because backgrounds are high there; a dedicated diagnostics section is required.

Laser-wire Options

dimber 1

PSD

EERING

NFR

Snowmass

Pulsed: Practical Considerations

- f1 geometry is challenging
- Limitations from power
- Limitations from angle
- Surface optical quality
- Alignment tolerance

f1 Lens design is challenging

- Limitations from power
- Limitations from ghost images
- Alignment tolerance

Snowmass

Laserwire with an external optical cavity

17 August 2005. Snowmass

Cavity and the chamber

- Cavity is in the vacuum.
- Position of the cavity mirrors are finely controlled by PZTs.

	horizontal-wire	vertical-wire			
reflectance (front)	99.1 %	99.8 %			
reflectance (rear)	99.9 %	99.9 %			
curvature	20 mm	20 mm			
finesse	620	1700			
enhancement	660	1300			
effective power	79W	156 W			
w0	11.3 ±0.16 μm	29.4 ±0.5 µm			
Rayleigh length	760 µm	5100 µm			
wave length	532 nm				
laser line width	10 kHz (single line)				
laser power	300 mW (cw)				

17 August 2005. Snowmass

Measurement of the emittance damping

0 12

s Importation Importation

0.04

II SH

- Repeat beam injection to the DR.
- Separately count up the signal according to the time after the injection.

17 August 2005. Snowmass

14

Accuracy

A 5-point Gaussian 1% σ_m measurement \Rightarrow ~2900 events at peak

(assumes 100% efficiency so this is too optimistic)

17 August 2005. **Snowmass**

Number of Comptons

$$n_{i} = N_{0}\epsilon_{i} \qquad \epsilon_{i} = \frac{1}{\sqrt{2\pi}\sigma_{m}} \exp{-\frac{(\Delta_{y}^{i})^{2}}{2\sigma_{m}^{2}}}$$
$$N_{0} = \frac{PN_{e}\lambda\sigma_{T}}{hc^{2}}$$

Requiring a 1% σ_e : Instantaneous laser-power

$$P = 1.23\sigma_m/N_e \begin{bmatrix} 1 + \left(\frac{\sigma_\ell}{\sigma_e}\right)^2 \end{bmatrix} \begin{bmatrix} N_e & (\times 10^{10}) \\ \sigma_m & (\mu m) \\ P & (MW) \end{bmatrix}$$

17 August 2005. Snowmass

Rayleigh-Range

$$\theta = \frac{\lambda}{\pi\sigma} = \frac{1}{f_{\#}}$$

$$x_R = M^2 \frac{4\pi\sigma_0^2}{\lambda}$$

17 August 2005. Snowmass

Full Overlap Integral

$$\epsilon(\Delta_x, \Delta_y) = \int \frac{dxdy \ I_\ell I_e}{(2\pi)^{\frac{3}{2}} A \sigma_e^2 \sigma_\ell \sqrt{f_R(x - \Delta_x)}} exp\left[-\frac{x^2}{2A^2 \sigma_e^2} - \frac{y^2}{2\sigma_e^2} - \frac{(y - \Delta_y)^2}{2\sigma_\ell^2 f_R(x - \Delta_x)}\right]$$

f1 is not always optimal; depends on aspect ratio

17 August 2005. Snowmass

Optimal Powers and f#

$\sigma_\ell \ \mu { m m}$	$A = (\sigma_x / \sigma_y)_{\rm ebeam}$	$f_{\#}$	ρ	$\sigma_\ell~(\mu{ m m})$	$x_R \; (\mu \mathrm{m})$	P (MW)	$\delta_x(\%)$
1	1	1	0.92	0.692	8.69	1.8	1
1	10	1	0.99	0.692	8.69	1.8	3.7
1	100	3	4.3×10^{-1}	2.07	78.2	4.0	7.8
2	1	1	$4.0 imes 10^{-1}$	0.69	8.69	4.2	1
2	10	1	3.46×10^{-1}	0.692	8.69	5.0	3.7
2	100	3	1.39×10^{-1}	2.07	78.2	12	9.9
3	1	1	$2.0 imes 10^{-1}$	0.69	8.69	6.4	1
3	10	1.5	1.77×10^{-1}	1.04	19.6	7.6	3.7
3	100	4	7.5×10^{-2}	2.77	139	17	10
5	1	1.5	7.35×10^{-2}	1.04	19.6	24	1
5	10	1.5	6.78×10^{-2}	1.04	19.6	26	3.7
5	100	5	3.35×10^{-2}	3.46	217	50	11

Details in EUROTeV note.

17 August 2005. Snowmass

Systematics

Measured profile is a complicated convolution of laser profile and electron beam profile.

$$\begin{split} \frac{\delta \sigma_y^e}{\sigma_y^e} = &\sqrt{\delta_m^2(1+r^2)^2 + \delta_\ell^2 r^4} \\ \text{where r} = \frac{\sigma_\ell}{\sigma_e} \end{split}$$

Require a 1% σ_{e} (?) Assume we can measure σ_{I} to 10% (?)

⇒r < 0.3

17 August 2005. Snowmass

Converging on a solution

- f1.5 optics seems "do-able" (R&D addressing this at ATF extraction line)
- Green light efficient and practical (but UV is still possible if required).
- Precision measurement of 1% on σ_y assuming e-beam aspect ratio of 10 \Rightarrow

Laser pulse power ~ 8MW 3.7% measurement of σ_x (using same laser) $\sigma_y \sim 3 \ \mu m$ (from systematics) $\Rightarrow \beta \sim 441m$ at 1 TeV ($\gamma \epsilon_v = 4.10^{-8} m$ -rad)

Q: Is 1% needed? Q: Is 441m OK for the β -fn? or maybe \exists optics tricks?

Laser Parameters I

Injection-seeded Q-switched with 8MW pulses pulse length ~ ns 5Hz repetition rate Nd-YAG doubled (green – 532 nm) Advantages:

- essentially no new R&D required (similar system will be tested at PETRA)
- Should be reliable
- Commercial solutions available
- Disadvantages:

Only one pulse per train; "slow" system.

Laser Parameters II

- Mode locked system with 8MW pulses
- pulse length ~ 2ps
- 300 ns pulse spacing
- Nd-YAG doubled (green 532 nm)
- Advantages:
- will allow intra-train pulse properties to be measured Centroid to ~ 1 % of a σ over 5 bunches Value of σ to ~1%
- **Disadvantages:**
- •Expensive & may have reliability issues.

•Research project in itself (R&D will start in UK this year).

Good summary of laser-wire issues from Nanobeam2001 J Frisch: http://icfa-nanobeam.web.cern.ch/icfa-nanobeam/slides/frisch_laserwire.pdf 17 August 2005. GA Blair Laser-wire Snowmass

Mode-locked potential

So every ~ 5 bunches a Gaussian fit is returned \Rightarrow 564 separate bunch profiles within a train.

After 5 trains, each bunch would have its own fit; both central point and sigma to about 1%.

Q: Is this required, nice-to-have, or over-kill ?

17 August 2005. Snowmass

Could do even better

Segmented detector

Requires a set of (low-strength) dipoles After each LW

> (Maybe not good to create dispersion during emittance measurement)

17 August 2005. Snowmass

Design of Diagnostics Section

We aim to set up a task force to address the BDS Diagnostics section this and next week.

We propose a meeting early next week followed by work during the week.

A report back session towards the end of next week, within WP4. Who?: GB, D. Angal-Kalinin, J. Carter, I. Agapov M. Woodley + anyone interested in joining.

Attempt at a Matrix Preliminary

Sub-	LW type	Detection	Number	Scanning		
system			required	tech.		
DR	CW or	Low energy	6?	Piezo, or		
	pulsed	Photons,		stepping		
		Compton det.		motor		
Linac	Pulsed	Electrons?	??	Fast piezo?		
	(Mode-	Beam loss		Semi-Fixed?		
	Locked?)	monitors?				
BDS	Pulsed	High energy	8?	Fast Piezo,		
	Mode-	Photons;		Or EO tech.		
	locked	Compton det.				
		or cal.				
17 August 2005. GA Blair Laser-wire						

Cost?

28

Snowmass

Summary

- Several LW solutions are possible
- What is actually needed in each part of the machine?
- LW systems may need significant infrastructure so their location and function needs to be specified.
- Intra-train emittance measurement at the micron scale seems possible, but still needs R&D (ongoing).
- Signal extraction is an important issue and impacts on the layout of the beam-pipe and nearby elements.
- Light delivery is a significant issue too.
- A combination of systems may be necessary; BDS with a mode-locked high-power system. Q-switched systems may be adequate elsewhere (?).
- Tuning against a fixed laser-wire (D. Schulte et al.)
- We need to specify requirements in more detail now. 17 August 2005. GA Blair Laser-wire 29 Snowmass 29