DR Location

What must be taken into account?
-Main linac location in Phase 1 (500GeV CM)
-DR shape (shared tunnel or independent tunnel)
-Undulator for positron (simple if conventional method)
-Else
-spin rotator
-BC1, BC2
-turn-around for feedforward

Linac Location in Phase 1

4 cases of linac location in 500 GeV phase
F : Fill 1 TeV tunnel, run at half gradient
U : Linac at upstream in 1 TeV tunnel
D : Linac at downstream in 1 TeV tunnel
D': Only 500 GeV tunnel constructed in phase 1

D' has the advantage
-Cost of phase 1 minimum
-Phase 2 construction/installation during phase 1 operation
Vibration/ground motion tolerable during operation? If not, this is a disadvantage.
(long shutdown of tunnel construction for upgrade)

DR Shape and Location

2 cases of DR shape
S: Shared tunnel (dogbone)
I : Independent tunnel (incl. surface) (circular ring)
Assume
-Do not move the location of DR for upgrade
For each of S and I, possible locations are specified by

1. DR at upstream tunnel
2. DR at downstream tunnel
3. near BDS (only for case I. Share DR tunnel for e^{+}and e^{-})

Let's exclude some of the cases

- Exclude F
- Phase 1 most expensive
- Low gradient not preferable for dynamics
- Need RF distribution change in upgrade
- Exclude D'
- Upgrade perhaps may take time though phase 1 least expensive
- but actually similar to D for DR location consideration
- Exclude Location 3 (near center)

- Perhaps, among these 8 , dogbone and circular ring will not make difference so long as DR location problem is concerned
- except that the interference problem must be taken into account for dogbone
- Choose dogbone figures here in order not to forget about interference.

2U

Criteria

May include insignificant items

1. tunnel length
2. beamline length
3. require linac module movement at upgrade ${ }^{\text {a) }}$
4. require e+ undulator movement at upgrade ${ }^{b}$)
5. stray field onto DR
6. upgrade installation during phase1 operation
7. feedforward turn-around
8. commissioning scenario
9. Others?
a) when low energy part must have different quad configuration
b) needed if e+ to be generated always at same energy

Input from WG1

- High grad from the beginning is preferred (exclude F)
- When DR injects to upstream tunnel
- BC must be immediately before linac
- Prefer linac in upstream tunnel
- When DR injects to downstream tunnel
- No consensus
- Minimize low energy transfer in any case
- Turn-around for feedforward recommended

Pros of Upstream Linac

- Can change optics for low E to high E
- Constant E positron generation (undulator)
- No low E long transport (if upstream DR)
- Bunch compressor right before linac
-Downstream linac (with downstream DR) can minimize the shutdown at upgrade

Pros of Upstream DR

- Shorter transfer line (or no need to reconstruct transfer line at upgrade)

Recommendation?

- Prefer upstream linac
- Prefer upstream DR
- Unless dogbone is selected and the stray field problem turns out to be too serious
- Surface or underground
- Site-dependent

DR Location in Tunnel Cross-section

1. Ceiling
2. Under cryomodule
