GDE questions, including one or two IRs

Grahame Blair, Tomo Sanuki, <u>Andrei Seryi</u> for WG4

Snowmass, CO, August 22, 2005

picture taken in 2001

GDE questions (Himel's list) related to WG4

Snowmass 2005

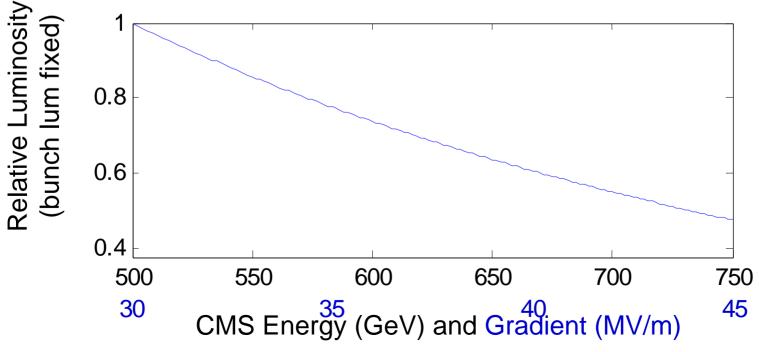
http://alcpg2005.colorado.edu:8080/alcpg2005/program/accelerator/GG3/tom_himel20050820225601.xls

	Decisions	Rank	expe	impact	decision	produ	Input needed	Input needed	Input	Input
			nse		contenti	-	from	from	needed	needed
				decisio	ousness				from	from
1		-	-	ns 🖉	-		-	-	-	•
2	beam and luminosity parameters. All groups involved	1	1	_	2	2	GG1-params	GG3-Ops	WG4-BDS	
	main linac starting gradient, upgrade gradient, and upgrade	2						•		
	path		1	3	1	3	GG5-cost	WG5-Cavities	GG1-params	WG2-Linac
4	straight or follow earth's curvature?	3	1	1	2	2	GG5-cost	GG4-civil	WG1-LET	WG4-BDS
5	1 or 2 IRs, if two, run interleaved?	4	1	3	1	3	GG5-cost	WG4-BDS	GG6-options	WWS
6	1, 1.5, or 2 tunnel	5	1	1	1	1	GG5-cost	GG3-Ops	WG2-Linac	GG4-civil
7	DR size and shape	6	1	2	1	2	GG5-cost	WG3b-DR	GG1-params	GG6-options
8	e+ source type conv/undulator/compton	7	2	1	2	4	GG5-cost	WG3a-sources	GG3-Ops	WG3b-DR
9	is there an e+ pre damping ring	8	1	2	3	6	GG5-cost	GG1-params	WG3b-DR	WG3a-source
	DR location: 1st half tunnel, 2nd half, ceiling, under	9								
10	cryomodules, separate tunnel		1	2	1	2	GG5-cost	GG1-params	GG3-Ops	WG3b-DR
11	cavity shape/iris size	10	1	3	1	3	GG5-cost	WG5-Cavities	WG1-LET	WG2-Linac
		_			-					
15	crossing angle			1	2	1	2 WG4-BDS	GG4-civil	GG6-option	S
21	gamma-gamma upgrade path			2	2	2	8 WG4-BDS	GG6-options	WG3b-DR	GG1-paran
34	optimize L*			3	2	2	12 WG4-BDS			
35	tail folding octupoles in BDS?			2	3	2	12 WG1-LET	WG4-BDS		
37	collimation stragegy - passive? Order of E and beta			3	3	2	18 WG1-LET	WG4-BDS		
40	FF optics: traditional/local correction			2	3	3	18 WG4-BDS			

GDE questions (Himel's list) related to WG4

http://alcpg2005.colorado.edu:8080/alcpg2005/program/accelerator/GG3/tom_himel20050820225601.xls

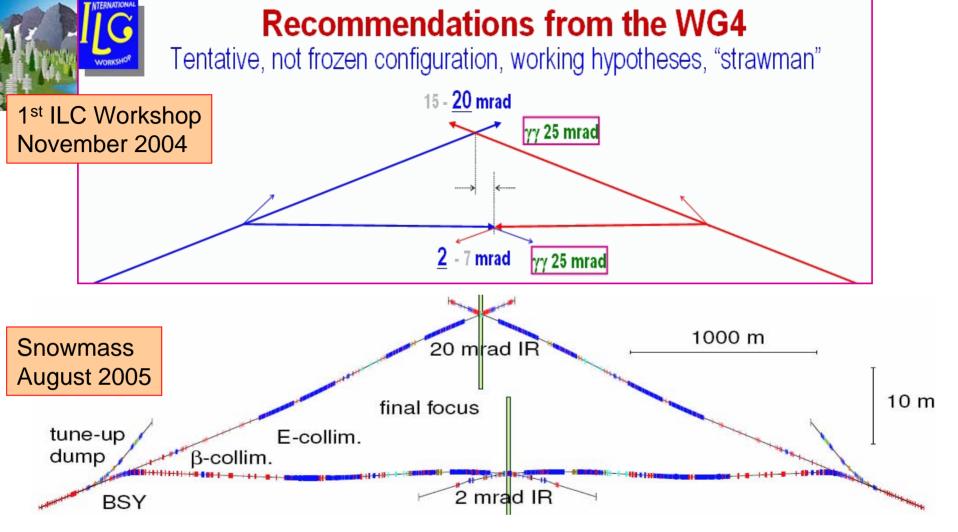
- beam and luminosity parameters
- straight or follow earth's curvature?
- 1 or 2 IRs, if two, run interleaved?
- crossing angle
- gamma-gamma upgrade path
- optimize L*
 - consider range 3.5-4.5m (depend on x-ing angle)
- tail folding octupoles in BDS?
 - yes, included in BDS; collimation must work without them
- collimation strategy passive? Order of E and beta
 - passive spoiler (survive 2bunch at 500GeV CM, one at 1TeV CM); first beta, then E; detection of E-error by separate chicane in diagnostics section, one bunch (337ns) may go through
- FF optics: traditional/local correction
 - local correction



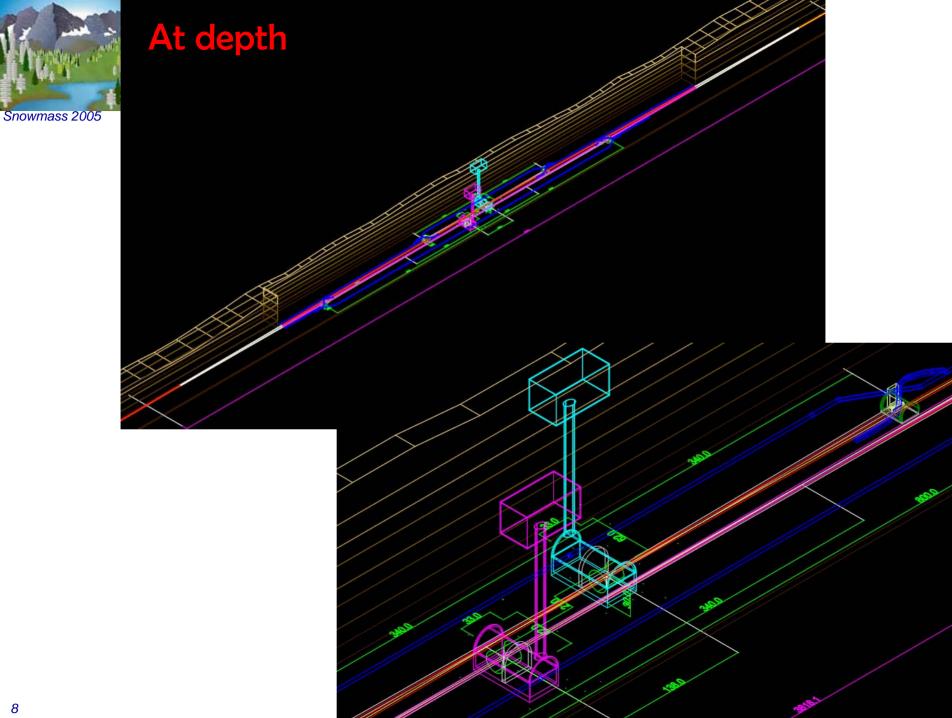
- Nominal parameters are acceptable
- Parameter sets which have large beamstrahlung, may turn out to be not working from the point of view of extraction line energy acceptance and from background (pairs hitting vertex)
- High Lumi 1TeV set is not working. Alternative set suggested. Need feedback from DR & LET.
- Alternative set for 500GeV CM will be suggested
- Some other sets (e.g. Low P) may have the same problems (not evaluated in details)
- Low Q option is good for background (but Nbunches may be concern for DR?)

beam and luminosity parameters (cont'd)

- From WG2 summary by Chris Adolphsen: "If decrease current by reducing number of bunches, achieve the following energy reach assuming ~ 50% cooling overhead used and no Q variation with gradient (could lower rep rate if needed). (Assumed that in 10 years, which is probably the earliest the machine could be built, that 45 MV/m could be reached routinely)."
- For 1TeV linac, the energy reach is then 1.5TeV, with 70% of charge
- To what max energy/disruption should we spec the hardware: layout, design of BDS beamlines (including in particular the extraction lines and SC quad)?

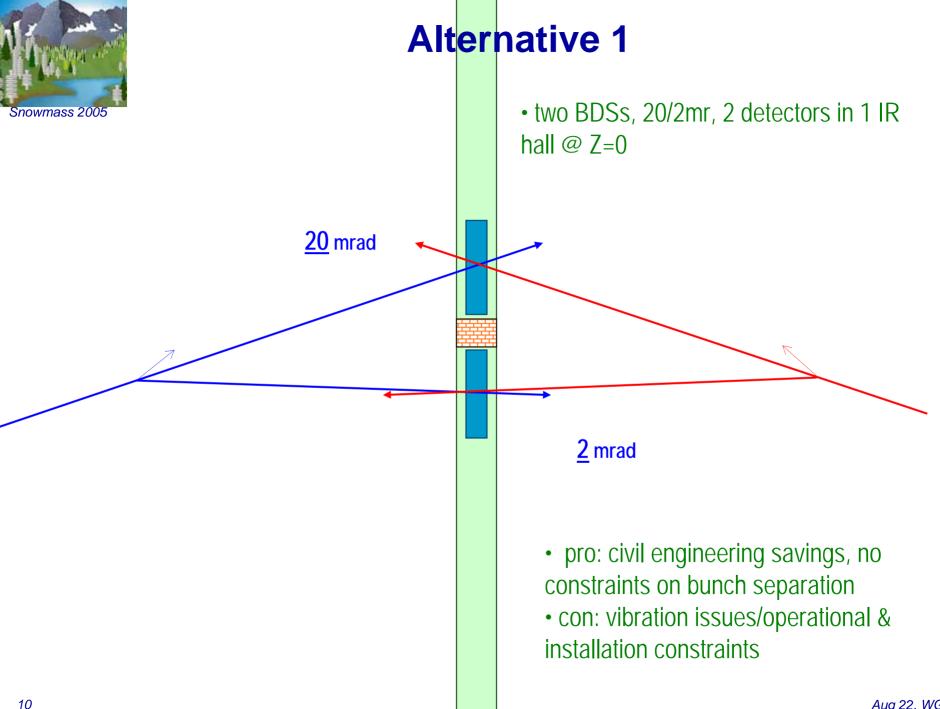


Aug 22, WG4



straight or follow earth's curvature?

- Prefer not to have any vertical angle between linac and BDS
 - this may be useful if one need to upgrade BDS, add collimation section, or diagnostics section
 - if multi-TeV compatibility is considered, preferable not to have vertical angle within some region around IR (for example +-5km? – to be evaluated)


Strawman tentative configuration turns into real design: Full optics for all beamlines; Mature 20mrad optics and magnets design; Several iteration of optics for 2mrad IR; Upstream and downstream diagnostics for both IRs Baseline: two BDSs, 20/2mr, 2 detectors, 2 longitudinally separated IR halls

One or two IRs, crossing angle Baseline & Alternatives

- Baseline: two BDSs, 20/2mr, 2 detectors, 2 longitudinally separated IR halls
 - γγ assumed to work at 20mr
- Alternative 1: two BDSs, 20/2mr, 2 detectors in 1 IR hall @ Z=0
 - pro: civil engineering savings, no constraints on bunch separation
 - con: vibration issues/operational & installation constraints
- Alternative 2: single IR/BDS, wide enough for 2 push-pull detectors
 - pro: cost savings, no constraints on bunch separation
 - con:
 - vibration issues/operational & installation constraints
 - GG6: $\gamma\gamma$ may not be feasible since need long & invasive modifications of IR implying very long switch over time
 - note:
 - transforms adiabatically into alternative 1, if required by physics
 - build additional tunnels for 2nd IR with desired configuration (small, intermediate or large angle, for e+e- or $\gamma\gamma$)
 - optimize 2nd IR using experience gained with 1st IR
 - question of one or two detectors is decoupled
 - study technical feasibility & implication of supporting two detectors (wide IR hall?; FD is part of detector for faster detector exchange?, etc...)
- Intermediate x-ing angle (10-15mr) is a variant for any of the above
 - unlikely to be yy compatible

Alternative 2

• Alternative 2: single IR/BDS, wide enough for 2 push-pull detectors

 pro: cost savings, no constraints on bunch separation

-con:

•vibration issues/operational & installation constraints

•GG6: γγ may not be feasible since need long & invasive modifications of IR implying very long switch over time -note:

•transforms adiabatically into alternative 1, if required by physics

–build additional tunnels for 2^{nd} IR with desired configuration (small, intermediate or large angle, for e+e- or $\gamma\gamma$)

–optimize 2^{nd} IR using experience gained with 1^{st} IR

•question of one or two detectors is decoupled

-study technical feasibility & implication of supporting two detectors (wide IR hall?; FD is part of detector for faster detector exchange?, etc...)