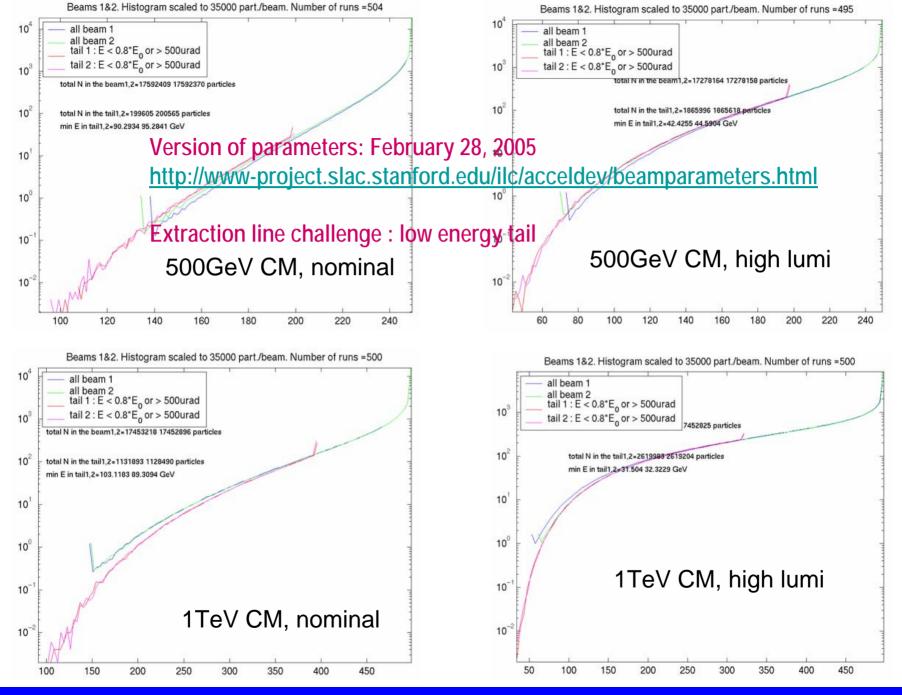
Discussion of ILC high luminosity parameters

Andrei Seryi

with suggestions from Tor Raubenheimer and critical comments by Peter Tenenbaum and Andy Wolski


First discussed on July 25, 2005 http://www-project.slac.stanford.edu/lc/bdir/Meetings/beamdelivery/2005-04-12/index.htm Since then discussed by detector groups and used to evaluate BDS performance

Design challenges and 1 TeV high lumi case

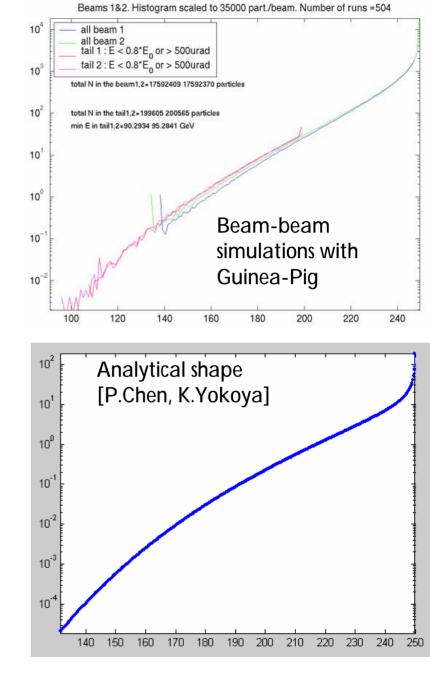
- Extraction of the disrupted beam is one of ILC challenges
- Energy acceptance of extraction beamline is not unlimited
 - so far achieved acceptance of approximately 35% to 100%
- Need to treat E acceptance in a similar way as other limits
 - like emittance growth in the linac, or
 - DR emittance due to coupling or collective effects

- Below, a very tentative set of parameters is suggested for discussion for 1 TeV high lumi case
 - It is designed to relax extraction line problems, but it certainly push other parts of the design

...

A.Seryi, High L parameters

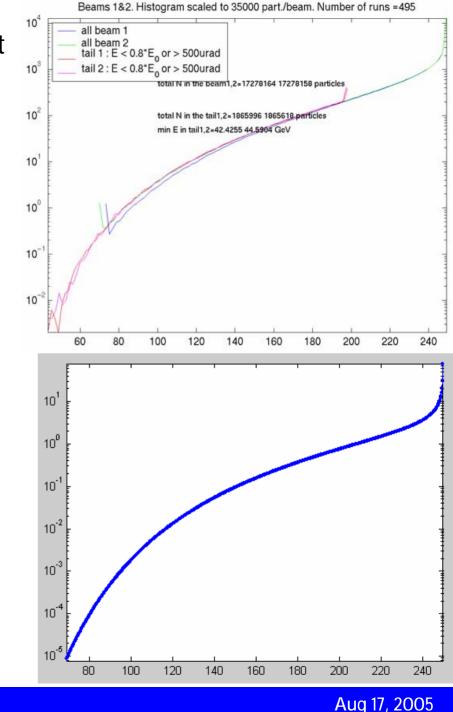
Aug 17, 2005


A.Seryi, High L parameters

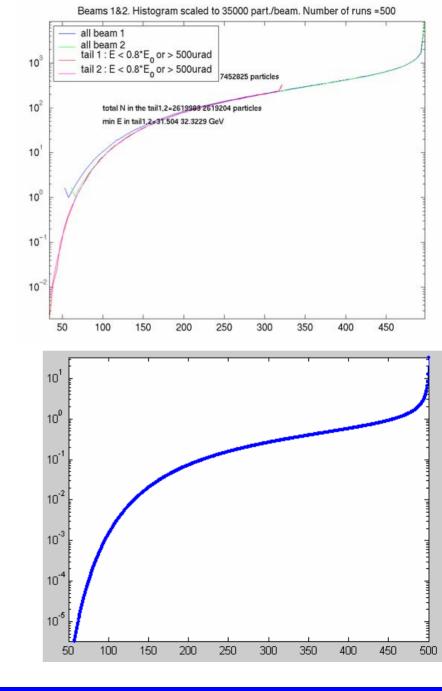
- For quick optimization used analytical expression for spectrum after collision
- Shape reproduced nicely, but the relative energy is somewhat lower in GP simulations
- Used as a criteria the energy, below which there is less than 10W of tail

500GeV CM nominal

Input :	Output (analytical numbers):
energy=250	P_b=11280000
particles=2	Dx=0.16
sigma_x=655	Dy=18.4
sigma_y=5.7	Hd=1.69
sigma_z=300	LumG=1.20e+038
emitt_x=10	Lum=2.03e+038
emitt_y=0.04	P_beamstrh=243670
beta_x=0.021	Upsilon=0.045
beta_y=0.0004	nG=1.26
frep*nb=14100	delB=0.0216
	inc. pairs/bc total=206900
	E_{10} = 10 M = 126 CoV (54 5%)


(54.5%) Elower10W=136 GeV

Aug 17, 2005


- For High Lumi 500 GeV CM, the 10W limit occur at 30% of the nominal energy (analytical number)
- This case is barely works (or not) with 20mrad extraction
- Let's consider this 30% as the limit

----Input : energy=250 particles=2 sigma_x=452 sigma_y=3.5 sigma_z=150 emitt_x=10 emitt_y=0.03 beta_x=0.01 beta_y=0.0002 frep*nb=14100 ----Output : P_b=11280000 Dx=0.168 Dy=21.71 Hd=1.733 LumG=2.837e+038 Lum=4.916e+038 P_beamstrh=780104 Upsilon=0.13 nG=1.73 delB=0.069 inc. pairs/bc total=507646 Elower10W=75 (30%)

- For High Lumi 1 TeV CM, the 10W limit presently occur at 13.3% of EO
- With present extraction design, with downstream diagnostics, this set does not appear to work
- Let's modify parameters so that 10W limit increase at least to 30% of EO

----Input : energy=500 particles=2 sigma_x=320 sigma_y=2.5 sigma_z=150 emitt_x=10 emitt_y=0.03 beta_x=0.01 beta_y=0.0002 frep*nb=11280 -----Output : $P_b=18048000$ Dx=0.167 Dy=21.46 Hd=1.74 LumG=4.488e+038 Lum=7.812e+038 $P_beamstrh=3176989$ Upsilon=0.369 nG=2.22 delB=0.176inc. pairs/bc total=1084825 Elower10W=66.5 (13.3%)

- For new 1TeV high lumi case, basically need to decrease Υ more than twice, while keeping L almost same and keeping D_v below ~28
 - aim for "high L" = 2*nominal, not higher (presently high/nom=2.8)
 - aim that disrupted beam tail has < 10W below 30% of EO
- Remind scaling

Lumi ~
$$\frac{N^2}{\sigma_x \sigma_y}$$
 $D_y \sim \frac{N \sigma_z}{\sigma_x \sigma_y}$ $\Upsilon \sim \frac{N}{\sigma_x \sigma_z}$ $\delta_E \sim \frac{N^2}{\sigma_x^2 \sigma_z}$

- Reduction of Υ twice seem to possible only with twice longer bunch
- Further reduce Υ by increasing σ_x faster then N (also helps to keep $D_y < 28$)
- Same σ_y with 2*long bunch (twice β_y^*) require smaller ε_y , => slight increase of σ_y , so that required ε_y is more feasible
- In summary, the suggested 1TeV high L parameter set has:
 - twice longer bunch (300um, not 150um as in present 1TeV high L set)
 - somewhat lower y emittance (0.023, not 0.030)
 - somewhat higher charge (2.4, not 2.0)
 - larger beam at IP (550*2.7, not 320*2.5)
 - higher y disruption (~ 27, not 21)

Suggested new 1 TeV High Lumi case

Suggested 1TeV high L ----Input : energy=500 particles=2.4 sigma_x=550 sigma_y=2.7 sigma_z=300 emitt x=10 emitt_y=0.023 beta x=0.0296 beta_y=0.00031 frep*nb=11280

----Output : 10-2 P b=21657600 10⁻³ Dx=0.136 Dy=27.75 10⁻⁴ Hd=1.64 10 LumG=3.48e+038 150 Lum=5.718e+038 P beamstrh=1450127 Upsilon=0.128 nG=1.697 delB=0.0669 inc. pairs/bc total=786246 Elower10W=146.5 (29.3%)

 10^{1} 10⁰ 10

300

350

400

450

500

200

250

If the higher charge is not possible, one can reoptimize with somewhat lower luminosity

February 28, 2005

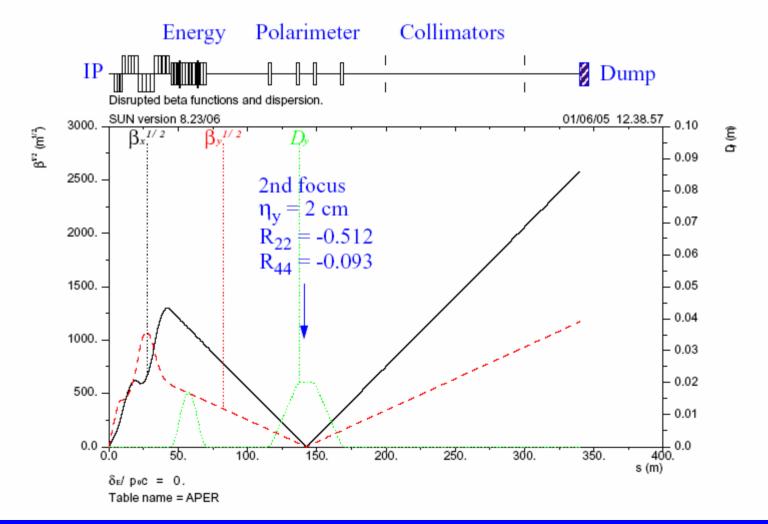
Suggested for discussion

Case11energy/beam , GeVparticles , 1E10sigma_x , nmsigma_y , nmsigma_z , umemitt_x , E-6 memitt_y , E-6 mbeta_x , mmbeta_y , mmfrep*nb , 1/s		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
particles , 1E10sigma_x , nmsigma_y , nmsigma_z , umemitt_x , E-6 memitt_y , E-6 mbeta_x , mmbeta_y , mm	Fe∨ nominal	1TeV high L	new high L	new' high L			
sigma_x,nm sigma_y,nm sigma_z,um emitt_x,E-6 m emitt_y,E-6 m beta_x,mm beta_y,mm	500	500	500	500			
sigma_y , nm sigma_z , um emitt_x , E-6 m emitt_y , E-6 m beta_x , mm beta_y , mm sigma_s , mm s	2	2	2.4	2			
sigma_z , um emitt_x , E-6 m emitt_y , E-6 m beta_x , mm beta_y , mm	554	320	550	470			
emitt_x, E-6 m emitt_y, E-6 m beta_x, mm beta_y, mm	3.5	2.5	2.7	2.7			
emitt_y , E-6 m beta_x , mm beta_y , mm	300	150	300	300			
beta_x , mm beta_y , mm	10	10	10	10			
beta_y,mm	0.04	0.03	0.023	0.023			
	30	10	30	21.6			
frep*nb , 1/s	0.3	0.2	0.31	0.31			
	11280	11280	11280	11280			
P_beam, MW	18.05	18.05	21.66	18.05			
Dx	0.11188	0.16767	0.13622	0.15545			
Dy	17.71	21.46	27.75	27.06			
Hd	1.52	1.74	1.64	1.64			
LumGeom, m-2 s-1	1.85E+38	4.49E+38	3.48E+38	2.83E+38			
Lum , m-2 s-1	2.81E+38	7.81E+38	5.72E+38	4.64E+38			
Lum / Lum Nominal	1	2.78	2.03	1.65			
P_beamstrh , MW	0.874	3.177	1.45	1.164			
Upsilon	0.106	0.37	0.128	0.125			
nG	1.42	2.22	1.7	1.66			
delB	0.0484	0.176	0.0669	0.0645			
inc. pairs/bc (LL)	64487	179110	131135	106509			
inc. pairs/bc (BW)	1273	4684	3347	2639			
inc. pairs/bc (BH)	281851	901029	651763	521591			
inc. pairs/bc total	347612	1084825	786246	630741			
Elower10W, GeV	168.5	66.5	146.5	150.5			
Elower10W, %	33.7	13.3	29.3	30.1			

A.Seryi, High L parameters

Discussion

- The new 1TeV high L set need to be further discussed
- The biggest push is of course for DR performance and LET performance
 - E.g. DR extracted emittance = 18nm
 - LET emittance dilution budget = 5nm
- Other sets, e.g. high Lumi 500 GeV CM, need to be considered from the same assumptions


From: Minutes of the fifth meeting for the IR task force 3rd August, 14:00-15:00

- "1. B and Machine-option dependence of RVTX, by Y.Sugimoto
- The B-dependence was shown with the 500GeV nominal parameter sets. The 500GeV high luminosity parameter set was compared with the nominal one. Also, the new high luminosity parameter sets were compared with the 1TeV high luminosity one. The radii of Be beam pipe (VTX innermost layer) vary from 12.5 (16.6) to 9.5 (13.2) mm in B=3 to 5T, respectively, with the nominal set. This radius vary from 18.5 (24.1) to 14 (18.4) mm in B=3 to 5 T, respectively, with the 500GeV high luminosity set. In the cases of 1TeV high luminosity sets, the new set of High L" can significantly reduce these radii from 20.5 (25.8) to 13.5 (17.8) mm.
- Finally, he concluded ; (1) Minimum radius of the vertex detector has been calculated based on a consideration of direct pair background hits on beam pipe (Other factors such as backscattering from BCAL should also be taken into account for the actual design); (2) RVTX has a weak B dependence of B-1/2; RVTX has a strong dependence on machine parameter set ; (3) Andrei's new parameters for High Luminosity option are very preferable from the viewpoint of background. His approach should also be applied to 500 GeV case if possible."

20mrad extraction

Y. Nosochkov

Beam optics

A.Seryi, High L parameters

Aug 17, 2005

Disrupted electron and beamstrahlung loss

E _{CM} y-offset	Max. e-loss density in magnets (W/m)		Total e-loss (kW)			γ-loss in collimators (kW) (L. Keller)			
-CM	L _{CM} at IP (nm)	SC quads	Warm quads	Bends	Excluding Coll. 1,2	Coll. 1	Coll. 2	Coll. 1	Coll. 2
0.5 TeV	0	0	0	0	0	0	0	0	0
nominal	200	0	0	0.13	0.003	0	0	0.15	0.05
0.5 TeV	0	15 (2.1*)	60	37	1.9	47	74	2.8	0.7
high-L	120	3.8 (0*)	95	372	11	47	95	151	10
1 TeV	0	0	1.8	4.8	0.19	0.85	0	0	0
nominal 100	0	7.1	77	2.4	4.8	0.11	0	0	
1 TeV	0	1106	4379	2032	98	64	44	1.5	0.2
high-L (c25)	80	1071	5391	7362	280	129	15	69	9.5
1 TeV	0	0	16	25	1.6	3.6	0.50		
high-L (c26)	100	0	49	352	11	17	1.3		
1 TeV	0	0	14	22	1.1	2.7	0.21		
high-L (c27)	100	0	27	213	7.2	12	1.2		

* After increasing aperture in QDEX1C and QFEX2A to r = 25 and 36 mm, respectively.