Normalized Background Tolerance Levels in ILC Tracking Detectors

- Introduction: motivation & methodology
- Detector tolerance levels
 - o naive detector model
 - o pain-threshold estimates
 - o 1% "generic"
 - o detector-specific (where available)
- Comparison with predicted pair-induced background levels
- Conclusions

Introduction

Motivation

- assess detector sensitivity to IR design changes (e.g. DID) on a scale 'normalized' to relevance
 - o 10 x a "very small" number may just be a "small" number, rather than a problem
- compare the sensitivity of various detector concepts (or subdetector technologies) to background levels in a given IR configuration

Methodology

- o define tolerance level, either
 - o in a generic fashion: 1% occupancy allowing for a factor of~ 10 contingency for surprises & unknown effects
 - using estimates supplied by the Detector Concept Groups
- compare background levels predicted by simulation, to tolerance levels ('pain thresholds') in various subdetectors, in a consistent fashion
- so far limited to
 - o tracking detectors
 - o pair-induced backgrounds from ideal beams (no fluctuations)

Acknowledgements

- Much of what follows draws heavily on
 - the hard work of the people who produced the plots shown today
 - Karsten's &Takashi's presentations last week: thanks!

A naive detector-tolerance model

Subdetector	Tolerance criterion	
Vertex detector	Rad. damage (worst-case: CCD's) : ∫ < 3-10 x 10 ⁹ n cm ⁻¹	
and/or	Occupancy (pattern recognition): < 1% (2-d hit density)	
Silicon Tracker	Occupancy (pile-up): ≤ 1 hit / channel ("buffered")	
Time Projection Chamber		

Detector-response model (*)

(*) As per R. Settles et. al., TESLA St Malo workshop. Checked with R. Settles & P. Colas @ Snowmass '05.

Subdetector	Granularity	Sensitivity window	Fract'l sensitivity
Vertex detector (Layer 1)	20 x 20 pixels = 2500 pixels/mm ²	50 s	Chgd trks: = 1.0 (4 pixels) : = 0.02 (4 pixels)
TPC	(~ 150 buncl	(~ 150 bunches)	Chgd trks: = 1.0 (3 p x 200 r x [5-10] tb)
			: = 0.02 (3 p x 200 tb) n: = 0.01 (3 p x 200 tb)
			: = 1.0 (6 p x 1000 tb)

"1% generic"

Background tolerance levels (*)

(*) As per R. Settles et. al., TESLA St Malo workshop Detector-specific data from T. Maruyama + detector response to MDI questions, Aug 05.

Limits are expressed in # particles either per sensitivity window [SW] (typically 50 s \approx 150 bunches in VXD/TPC), per bunch train [tr], or per bunch crossing [BX]

Subdetector	Charged hits		n (~ 1 MeV)	Model
Vtx detector (L1)	6 mm ⁻² / SW	300 mm ⁻² /SW	3 x 10 ⁷ mm ⁻²	1 % generic
	100 mm ⁻² tr ⁻¹		10 ⁸ mm ⁻² (/y?)	GLD
Si tracker	Pile-up: 0.2 / 1.0 mm ⁻² tr ⁻¹	Pile-up: 10/50 mm ⁻² tr ⁻¹		SiD: analog/digital
TPC (/SW)	1.5 x 10 ⁷ voxels ≈ 2.5 - 5 10 ³ tracks	1.25 x 10 ⁶	2.5 x 10 ⁷ <i>n</i>	1 % generic

Notes

- 1. No generic answers depend strongly on subdetector technology
- 2. Need to clarify impact of TPC occupancy on track reco efficiency & space charge
- 3. Only rough estimates so far. Real answer needs detailed simulations, pattern recognition studies, space charge, understanding of background distribution....
- 4. 1% may sound overconservative...but we need ~ x 10 safety factor!

Assumed Vertex-Detector Geometries

Concept	GLD	LDC	SiD
Radius (cm)	r1= 2.0	r1= 1.55	r1 = 1.40
Full length (cm)		L _z = 10.0	L _z = 12.5
Area (cm²)	Use GLD-provided normalization	S = 97.4	S = 110

e+ - e- Pairs

- Dominant background
- Very dependent on
 - Beam parameters
 - Solenoid field strength
 - Solenoid compensation (for 20 mrad)
 - VXD layer radius
 - Forward geometry

	Beam	# e+/e-/BX	Total energy
>	Nominal (N)	98 K	197 TeV
	Low Q (Q)	38	86
500 GeV	High Y (Y)	104	191
20	Low P (P)	232	709
	High Lum (H)	268	944
1 TeV	Nominal	174	1042
	Low Q	73	486
_	High Y	229	1356
	Low P	458	4596
	High Lum	620	7367

W. Kozanecki Slide 8 ILC Workshop, Snowmass '05

VXD hits (GLD)

- Pair background hit rate on the 1st layer of the Vertex Detector (R=24mm)
- Simulation using CAIN and JUPITER
- Hit rate of the Low Q option is ~1/3 of the nominal option, as expected

Pair B.G. hit rate (/cm^2/bunch)			
B(tesla)	Nominal	LowQ	
3	0.488	0.149	
4	0.48	0.113	
5	0.183	0.069	

Crossing-angle dependence (LDC)

TESLA Beam parameters VXD tolerance: 1% generic

TPC tolerance: tbd

o VXD hits

- No difference between 0 mrad and 2 mrad
- x 1.5-2 higher background in 20 mrad

TPC hits: <u>converted</u> only (no n's) from elm effects (pairs)

- Twice as much in 2 mrad than in 0 mrad
- Twice as much in 20 mrad than in 2 mrad
- neutrons: under study (gas, ECAL...)

DID effect on VXD & TPC hits (LDC)

TESLA Beam parameters VXD tolerance: 1% generic

TPC tolerance: tbd

O VXD hits

DID field reduces VXD hits to2 mrad level in all but layer 1

- TPC hits: <u>converted</u> only (no n's) from elm effects (pairs)
 - Significantly more TPC hits but still a factor of 5 below the 1% occupancy tolerance

- Average and RMS from 20 BXs.
- 20 mrad and 20 mrad + DID will have more VXD hits than 2 mrad.
- But bunch-to-bunch fluctuation is larger than the crossing angle difference.

Pair background ~ Xing-angle independent (at least in set N)

- Steep radial dependence
- Innermost region is at the tolerance level for pattern recognition (0.2 cm⁻² / BX).

- Twice as many photons in 20 mrad than in 2 mrad
- More than the detector tolerance level for "Low Power" and "High Lum" options

Open issues

- Tolerable TPC occupancy = ? (track reconstruction / space charge)
- Neutrons
 - background impact very sensitive to actual spectrum (e.g. TPC gas, plastic in calorimeter,..). Should be studied in calorimeter also!
 - o present simulations often statistics limited
 - o neutrons worse @ 1 TeV c.m. by ~ 1 order of magnitude?
 - o can extraction-line losses contribute significantly?
- Synchrotron radiation
 - o can we design a "bounce-proof" SR masking layout?
 - o back-scattering from apertures!
 - o edge- & tip-scattering off masks!
- Single-beam backgrounds: electromagnetic shower debris
 - halo scraping in or near final doublet (coupled to SR/collimation depth)
 - o beam-gas
- O Backgrounds in forward detectors?
- O Hot spots & asymmetries (for all of the above): 1 o.o.m? Impact?

- Proposed a 'standardized' way to compare
 - background levels in a given detector, across IR designs
 - IR designs across detector concepts
- A '1 % occupancy limit' (per train or per SW), implying a 'x 10' safety factor are probably adequate, at this stage & in most cases, for the vertex detector & Si tracker
- Comparison of predicted pair-background levels to (conservative!) detector tolerance levels (aver'gd over X-angle):
 - o vertex detectors:

LCD, SiD: layer 1 @ ~ occupancy tolerance (~ 1%)

o GLD: layer 1 @ 1 order of magnitude below tolerance

o all: high L/ low P parm sets significantly higher occ'pcy

- Si tracker (SiD): Pat Rec OK, pile-up x 5-10 > tolerance (buffering)
- TPC:
 - o predicted occupancy from e⁺e⁻ pairs is at the level of 0.02% to 0.20% (DID)
 - however, impact of such occupancies on (i) track reconstruction efficiency and (ii) space charge, remain to be understood
- Several important open issues: let's go beyond pairs & trackers!

Spares

More on open issues & 'sanity checks' (I)

Synchrotron radiation

© Concerns

- backscattering from downstream aperture limitations
- edge- & tip- scattering from upstream SR masks
- o impact of a partially-shared beam line on SR masking (2mr)?
 - compatibility of stay-clear apertures (spent beam, pairs, beamstrahlung) with effective masking of incoming SR
- o any hidden alligators?
 - consistency checks between independent calculations important (e.g. TESLA TDR vs. A. Drozhdin's results)

Synchrotron radiation (continued)

- © Lessons from existing detectors
 - BaBar design: SR background dominated by tip-scattering
 - o BELLE: 'fried' their first VDET by a combination of
 - improperly masked incoming-beam SR (very soft X-rays from XYCORs)
 - hard SR backscattered from the first beam-pipe wall on outgoing side
 - Zeus + H1: SR much of it backscattered absorbs a large fraction of their 'background budget'

Zeus CTD

W. Kozanecki Slide 20 ILC Workshop, Snowmass '05

More on open issues & 'sanity checks' (II)

Muons

- Secondary e[±] energy cutoff (> 50 GeV in A. Drozhdin's code in 2002) may be (have been ?) too high to realistically model 'harmful' production
- tunnel modelling (wrt transport): a huge job by itself....
- Electromagnetic debris: production & transport
 - Is the showering in 'thin' machine elements (vacuum pipe, magnets) modelled with enough realism to be sure we are not overlooking potential problems?
 - High energy e[±] losses 'near' the IP:
 - what is reasonable tolerance level (TWM: 'a few ten per train"?)
 - o how near is 'near'?

How far upstream of the IP do electromagnetic debris matter?

Can showers produced by full-energy e[±] 10-20 m from the IP on the incoming beam side cause substantial backgrounds, in view of .?

