IP Instrumentation

Measurement of: • Luminosity (precise and fast) • Energy • Polarisation

> Wolfgang Lohmann, DESY

August 2005

Snowmass Workshop

Precise Luminosity Measurement

Requirements on the Mechanical Design

radial beam offset

μ**m**

Beam Tilt

Performance Simulations for $e^+e^- \longrightarrow e^+e^-(\gamma)$

Simulation: Bhwide(Bhabha)+CIRCE(Beamstrahlung)+beamspread

Event selection: acceptance, energy balance, azimuthal and angular symmetry.

$$< X >= \frac{\sum X_i W_i}{\sum W_i} W_i = \max\{0, [const(E_{beam}) + \ln(\frac{E_i}{E_T})]$$

$$c \ (\theta)(rad)$$

$$x = 10$$

$$0.3$$

$$0.275$$

$$0.25$$

$$0.25$$

•More in the talks by Halina Abramowicz

4

20 mrad crossing angle

Beamstrahlung pair background Number of Bhabha events using serpentine field as a function of the inner 305 cm; N = 3093; E = 3227 GeV E [GeV/cm²] Z = + **Radius of LumiCal** [cu 10² 3500 20 6.E+09 -3000 5.E+09 **Amper of Bhabha evets per year** 3.E+09 3.E+09 2.E+09 1.E+09 1.E+09 Events per year 10 Background (GeV) 2500 2000 -20 1500 -20 20 n 1000 x [cm] 250 GeV500 A design for 20 0.E+00 mrad crossing 10 16 8 q 13 11 12 14 15 angle will be done R min (cm) (needs time)

Background from beamstrahlung

Concept for the Mechanical Frame

Fast Lumi Measurement and Beam Diagnostics

Luminosity Monitor Studies for TESLA

Olivier NAPOLY CEA, DSM/DAPNIA CE-Saclay, F-91191 Gif-sur-Yvette Cedex, France

and

Daniel SCHULTE CERN, PS/LP CH-1211 Genève 23, Suisse

November 10, 1997

Use Electrons from Rad. Bhabha events

Figure 1: The energy spectrum of the particles due to pair production, bremsstrahlung and beamstrahlung for TESLA (500 GeV c.m.) parameters.

Fast Lumi Measurement and Beam Diagnostics

Trajectories of off momentum electrons in the first dublett

PARTICLES TRACKING TO LUMINOSITY MONITOR

Figure 3: Trajectories from the IP hitting the luminosity monitor at 8.5 m

Fast Lumi Measurement and Beam Diagnostics

•Total hits in Lumi Cal and corresponding calculated Luminosity for an IP Beam Waist scan.

	Waist	Dispersion	Coupling
e^{-} -hits e^{+} -hits $(e^{-}+e^{+})$ -hits	$\begin{array}{c} 2.0\cdot 10^{-5} \\ 5.1\cdot 10^{-4} \\ 1.7\cdot 10^{-4} \end{array}$	$\begin{array}{c} 2.3 \cdot 10^{-5} \\ 3.6 \cdot 10^{-4} \\ 4.8 \cdot 10^{-5} \end{array}$	$\begin{array}{c} 3.1\cdot 10^{-6} \\ 1.7\cdot 10^{-5} \\ 1.5\cdot 10^{-6} \end{array}$
e^{-} -energy e^{+} -energy $(e^{-}+e^{+})$ -energy	$\begin{array}{c} 2.3\cdot 10^{-8} \\ 4.5\cdot 10^{-4} \\ 1.6\cdot 10^{-4} \end{array}$	$\begin{array}{c} 5.4 \cdot 10^{-5} \\ 4.0 \cdot 10^{-4} \\ 3.6 \cdot 10^{-5} \end{array}$	$\begin{array}{c} 2.6\cdot 10^{-7} \\ 2.8\cdot 10^{-5} \\ 8.3\cdot 10^{-6} \end{array}$

 Relative dL/L precision in determining optimal luminosity for various scans.

Observables

total energy first radial moment thrust value angular spread L/R, U/D F/B asymmetries

Quantity	Nominal Value	Precision
σχ	553 nm	1.2 nm
σу	5.0 nm	0.1 nm
σz	300 µm	4.3 μm
Δy	0	0.4 nm

$\int s = 500 \text{ GeV}$

zero or 2 mrad Crossing angle

Observables

total energy first radial moment thrust value angular spread L/R, U/D F/B asymmetries

Quantity	Nominal Value	Precision
σχ	553 nm	4.8nm
σу	5.0 nm	0.1 nm
σz	300 µm	11.5 µm
Δy	0	2.0nm

20 mrad crossing angle

Also simultaneous determination of several beam parameter is feasible, but: Correlations! Analysis in preparation

PRELIMINARY!

$$x = [x_1, x_2, \dots, x_n]'$$

$$x^* = x_{Design}$$

$$f^n(x) = \text{observable n for x vector}$$

$$f^n(x^*) = \text{observable n for x}^* \text{ design vector}$$

$$f^n(x) = f^n(x^*) + (x - x^*)' div.[f^n(x^*)] + \frac{1}{2}(x - x^*)' \widetilde{A}(x - x^*) + \dots$$

$$\widetilde{A} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdot & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdot & \cdot & \cdot \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdot & \cdot & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

•Compute Taylor matrices through multiple GP runs varying beam params-> use Grid computing at QM to do in finite time (Generate full matrix elements for first and second order terms, and diagonal only elements up to 9th order).

•For parameter reconstruction: Solve x for given f(x) using multi-parameter fit. Unique solution not guaranteed- choice of fit technique is important.

•Using Advanced Multi-Parameter non-linear fitting algorithm (Sequential Quadratic Programming Method) with 10-parameter fit (x ,y, x', y' and z IP sigmas).

 Fitter confused by errors, but averaging over 50 bunches, get above results by choosing best fit chi-squared.

and with PhotoCal

Photons from Beamstrahlung

Technologies for the BeamCal:

Radiation HardFastCompact

Heavy crystals

W-Diamond sandwich

Detection of High Energy Electrons and Photons(Detector Hermeticity) $\overline{2}$

√s = 500 GeV

Single Electrons of 50, 100 and 250 GeV, detection efficiency as a function of R ('high background region') (talk by V. Drugakov and P. Bambade)

Detection efficiency as a function of the pad-size (Talk by A. Elagin)

Message: Electrons can be detected!

Detection of High Energy Electrons and Photons

Realistic beam simulation √s = 500 GeV

Efficiency to identify energetic electrons and photons (E > 200 GeV)

Sensor prototyping, Diamonds

May,August/2004 test beams CERN PS Hadron beam – 3,5 GeV 2 operation modes: Slow extraction ~10⁵⁻10⁶ / s fast extraction ~10⁵⁻10⁷ / ~10ns (Wide range intensities) Diamond samples (CVD): - Freiburg

- GPI (Moscow)
- Element6

No. of Lot All

Diamond Sensor Performance

Linearity Studies with High Intensities (PS fast beam extraction) 10⁵ particles/10 ns

Response to mip

Upstream momentum spectrometer

- \bullet Bends $\sim 100~\mu Rad,$ lengths 10 m, 1 mm bump
- Need 100 nm (or better) resolution and accuracy
- Move BPMs to the beam (keep same relative position)
- Calibrate alignment by ramping chicane (bipolar best)

ESA Test Beam Plans for 2005/2006

2x10¹⁰ electrons per bunch @ 28.5 GeV (ILC buch charge and length)

- Compare different measurments (this spectrometer,
- A- line BPMs, Synchrotron spectrometer)
- Accuracy goal: < 100 ppm
- **Proof of principle!**

Energy Measurement

Downstream SR spectrometer

Polarimetry

Upstream polarimeter

+ Downstream polarimeter

Document on polarimetry design in Feb 2006

The needs from Detector and Machine side are different. Lets find solutions