

For compensation $\mathrm{G}_{\mathrm{in}}=160 \mathrm{~T} / \mathrm{m}$ at $I_{0}=767 \mathrm{~A}$ $G_{\text {out }}=-20 \mathrm{~T} / \mathrm{m}$ at $I_{0}=517 \mathrm{~A}$ for $G_{\text {eff }}=140 \mathrm{~T} / \mathrm{m}$ $L_{\text {mag }}=2.200 \mathrm{~m}$ $L_{\text {coil }}=2.228 \mathrm{~m}$

Worst case, all other $\gamma \gamma$ locations should have smaller residual field!

20 mr total crossing angle gives 90 mm separation at $Z=4.5 \mathrm{~m}$ Have a total of \longrightarrow
10 mm to play with

For a $\pm 11 \mathrm{mr}$ cone the extraction beam Inner Radius = 50 mm at $L^{*}=4.5$

The laser beam path, above and below, is centered on this line but is not shown here.
(Angles Relative to QDO in mr)

