Extraction Line Optics for 20 mrad Crossing Angle

Changes since LCWS 2005

- Initial focusing after IP is done by DFDF quadruplet instead of the five quad system.
- The large bore quad doublet after the polarimeter chicane is removed.
- The R_{22} matrix term between the IP and the Compton IP is close to -0.5.
- The dump is moved farther from the IP, from ~180 m to ~340 m, to increase the undisrupted beam size and reduce the beam density at the dump for realistic design.
- Two pre-dump collimators are included to limit the undisrupted beam size at the dump to R < 15 cm for realistic size of the dump window.

• SC compact quad design for the incoming and extraction quadrupoles near IP.

Beam optics

Magnet parameters at 1 TeV CM

Quad	L (m)	G (T/m) B (T) at aperture		R (mm)	
QDEX1A SC	2.2	-38.46	-0.5	13	
QDEX1B SC	1.5421	-80.00	-1.2	15	
QDEX1C SC	1.5421	-57.14	-1.2	21	
QFEX2A SC	1.8058	42.86	1.2	28	
QFEX2B,C,D	2.2583	24.39	1.0	41	
QDEX3A,B	2.6254	-24.39	-1.0	41	
QDEX3C	2.6254	-20.41	-1.0	49	
QDEX3D	2.6254	-16.67	-1.0	60	
QFEX4A	2.4306	14.08	1.0	71	
QFEX4B,C,D	2.4306	12.05	1.0	83	

• Chicane bends are L = 2 m long with B = 0.8339 T field at 1 TeV CM.

Disrupted beam parameters at IP (based on "suggested ILC beam parameter range," Feb. 2005)

E _{CM}	Luminosity (m ⁻² s ⁻¹)	Total power (MW)	y-offset at IP (nm)	$\frac{E_{min}}{E_0}$	electron X' _{max} / Y' _{max} (µrad)	photon X' _{max} / Y' _{max} (µrad)
0.5 TeV	2.03e+38	11.3	0	0.36	529 / 253	369 / 212
nominal (c11)			200	0.36	474 / 674	366 / 537
0.5 TeV	4.92e+38	11.3	0	0.17	1271 / 431	723 / 320
high-L (c15)			120	0.17	1280 / 1415	782 / 1232
1 TeV	2.81e+38	18.1	0	0.20	496 / 159	271 / 148
nominal (c21)			100	0.19	423 / 566	279 / 408
1 TeV	7.81e+38	18.1	0	0.063	2014 / 489	937 / 296
high-L (c25)			80	0.062	1731 / 1592	974 / 1200
1 TeV	5.72e+38	21.7	0	0.15	661 / 249	338 / 170
high-L (c26)			100	0.14	598 / 696	376 / 585
1 TeV	4.64e+38	18.1	0	0.15	597 / 236	546 / 159
high-L (c27)			100	0.14	537 / 691	342 / 532

Energy spread in the disrupted beam (for 7e+4 particles)

Disrupted electron and beamstrahlung loss

E _{CM} E _{CM} (nm)	y-offset	Max. e-loss density in magnets (W/m)			Total e-loss (kW)			γ-loss in collimators (kW) (L. Keller)	
	SC quads	Warm quads	Bends	Excluding Coll. 1,2	Coll. 1	Coll. 2	Coll. 1	Coll. 2	
0.5 TeV nominal	0	0	0	0	0	0	0	0	0
	200	0	0	0.13	0.003	0	0	0.15	0.05
0.5 TeV high-L	0	15 (2.1*)	60	37	1.9	47	74	2.8	0.7
	120	3.8 (0*)	95	372	11	47	95	151	10
1 TeV nominal	0	0	1.8	4.8	0.19	0.85	0	0	0
	100	0	7.1	77	2.4	4.8	0.11	0	0
1 TeV high-L (c25)	0	1106	4379	2032	98	64	44	1.5	0.2
	80	1071	5391	7362	280	129	15	69	9.5
1 TeV high-L (c26)	0	0	16	25	1.6	3.6	0.50		
	100	0	49	352	11	17	1.3		
1 TeV high-L (c27)	0	0	14	22	1.1	2.7	0.21		
	100	0	27	213	7.2	12	1.2		

* After increasing aperture in QDEX1C and QFEX2A to r = 25 and 36 mm, respectively.

Y. Nosochkov

Density of disrupted electron loss (W/m) (collimators are not shown)

Density of disrupted electron loss (cont'd)

Density of disrupted electron loss (cont'd)

X-Y disrupted distribution at dump (no IP offset)

• Collimators limit the beam size at dump to R < 15 cm.

Undisrupted beam size at dump

E _{CM}	Option	$\sigma_x \sigma_y (mm^2)$
0.5 TeV	nominal (c11)	$3.16 \ge 0.28 = 0.88$
	high-L (c15)	4.57 x 0.34 = 1.55
1 TeV	nominal (c21)	$1.87 \ge 0.63 = 1.18$
	high-L (c25)	$3.23 \ge 0.62 = 2.00$
	high-L (c26)	$1.87 \ge 0.61 = 1.14$
	high-L (c27)	2.20 x 0.61 = 1.34

- Sync. radiation helps to increase the vertical beam size, especially at high energy.
- Further increase of undisrupted beam size to $\sigma_x \sigma_y \sim 1.7 \text{ mm}^2$ (per D. Walz) may be needed for realistic dump design.

Conclusion

- The 20 mrad design appears conceptually acceptable.
- It provides a satisfactory optics for energy and polarization diagnostics.
- It provides a low beam loss for the nominal luminosity options.
- Further study is needed to verify the acceptable level of beam loss in the high luminosity options.
- Further optics optimization will include:
 - adjustments to satisfy the minimum beam size requirements at the dump,
 - converging on the realistic magnet parameters,
 - possible collimators to reduce beam loss on magnets.