

Halo Collimation Depth Using BDSIM

John Carter Royal Holloway University of London

- Halo Collimation Depth Studies
- Full BDS Collimation plans
- Example of BDSIM collimation capabilities
- Conclusion

16th August 2005 ILC Workshop, Snowmass

1

- Generate flat halo distributions at the entrance of the final doublet
 - Assumed Nominal 1TeV parameters @ IP:
 - $\beta_x = 30 \text{mm}, \ \beta_y = 0.3 \text{mm}$
 - 1% Energy spread on halo electrons
 - Track through LD solenoid field map, quadrupoles and sextupoles.
 - Full coupling between solenoid and quad/sextupole fields
 - SR Processes turned ON
- Check halo material passes all apertures in the interaction region
- Have 3 main constraining apertures QF1 pre-IP, BeamCal, QF1 pocket post-IP
- Find that incoming QF1 aperture (10mm radius) limits N_x to <13σ_x
 - N_x >= 13σ_x can travel through pocket relatively unfocused - but causes SR problems due to QD0

- Next limiting aperture is the BeamCal assuming:
 - 15mm radius @ 4m from IP
 - 2mrad off axis w.r.t incoming beam so halo material sees more of an elliptical shape
- Mapped out collimation depths from $N_x = 9$ to $12.5\sigma_x$ and $N_y = 0.5$ to $80\sigma_y$ in steps of half sigma
- Find:
 - N_x is limited to $9\sigma_x$
 - N_y is limited to $69\sigma_y$

250

Area of Halo SR distribution hitting QF1 for N_x Vs N_y

H_y [σ_y]

70

- Next aperture is the QF1 pocket used for extraction
- Produced a similar collimation map as for BeamCal
 - Here assuming that the BeamCal radius is not an issue (hence higher N_x values)
- Assuming a requirement of NO hits on QF1:

- Halo SR hitting QF1 post-IP may not be a serious issue for the VXD increasing N_y to 68σ_y and firing 100,000 initial halo electrons showed no backscattered **photons** from QF1 reached the VXD.
- However, low energy secondary electrons created from photons hitting the QF1 wall DO leave hits in the VXD - currently investigating to what extent.

John.Carter@rhul.ac.uk

ILC Snowmass 2005

1

Next step is to take 2mrad BDS deck from linac exit to final focus:

www.slac.stanford.edu/~mdw/ILC/Beam_Delivery/20050316/ebds2.mad

 In preparation for this, BDSIM has been modified to include the combined function magnets used in the large bend

Full BDS Tracking Example of capability BDSIM using 20mrad

h2 Core beam at the IP Ξ²⁰^{×10°} 69882 800 900 1000 1100 1200 1200 1400 1500 1600 1700 1800 Entries Tracked core and halo Mean x -1 487e-10 Mean y -8.195e-12 Tue Aug 16 10:25:14 MST 2005 carter loaded 1 6mrad 030605/ebde1 20mrad onti particles along the RMS x 2.355e-07 × 15 트 촙 ^{0.15} RMS y 4.044e-09 20mrad BDS from exit 10 0. of linac to IP 5 0.05 Using default collimation settings -5 -0.05 -10 -0.1 7x10⁴ Core beam -15 -0.15 events fired. 2000 2200 2400 1000 1200 1400 1600 1800 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 600 800 0.8 -1 1 Z [m] X [m] Halo Electron Distribution at the Final Doublet h1 0.002 Halo Energy Loss along the 20mrad BDS ۲ [m] Entries 4414899 Mean 1026 0.0015 Deposits [GeV/m] 300 220 220 RMS 76.32 PC2 0.001 AB3 & 0.0005 1x10⁶ Halo events fired. SP3 n 200 Energy Only ~9x10³ reach FD -0.0005 150 -0.001 100 -0.0015 50 -0.002 -0.002 0 0.002 0.004 0.006 0.008 0.01 0 1000 1500 2500 500 2000 X [m] Z [m] John.Carter@rhul.ac.uk ILC Snowmass 2005 6

Full BDS Tracking Example of capability BDSIM using 20mrad

25000

20000

15000

10000

5000

Halo Particles after Spoiler SP1

0.8 -0.6 -0.4 -0.2 -0 0.2 0.4

h1

Entrios 1044469

Mean 4.859e-08

RMS 0.000223

Electrons

Photons

0.6 0.8

X [m]

×10-3

Particles after SP1

25000

20000

15000

10000

5000

-0.8 -0.6 -0.4 -0.2 -0 0.2 0.4

Entries 1189833

Mean 1 365e-07

RMS 0.0002469

10

0.6 0.8

X [m]

Check collimation before and after spoilers: (all plots for Halo simulation)

Check energy collimation:

(E Cuts: 100 GeV for photons ,0.1 GeV for electrons. SR processes turned OFF)

John.Carter@rhul.ac.uk

ILC Snowmass 2005

- Halo Collimation Depth checks have been done for the new 2mrad crossing angle FD parameters using BDSIM.
 - The BeamCal radius looks to be the most constraining aperture
 - QF1 pocket can add a further complication if backscattering proves to be a major issue
 - Large events currently being run to increase statistics to fully check backscattering issues with this new 2mrad FD design
- BDSIM has been modified to now allow for a full collimation check using the entire 2mrad BDS
 - Addition of support for combined function magnets by creating improved steppers
 - Capabilities of BDSIM (w.r.t collimation issues) have been shown using the 20mrad BDS as an example
- Currently looking to modify BDSIM further to include support for vertical chicanes
 - Can then track synchrotron photons down the extraction line
- Plan to run a series of collimation crosschecks and tool benchmarking between BDSIM and MERLIN