

CESR-c Wiggler Experience

Mark A. Palmer for the CESR-c Operations Group

Second ILC Accelerator Workshop August 16, 2005

- CESR-c Overview
- Wiggler Overview
- Wiggler Modeling and CESR-c Optics Design
- Wiggler Beam-Based Benchmarking
- Conclusion

CESR-c Overview

Wigglers

- Superferric wigglers
 - Lower damping time:
 570ms ⇒ 55ms @ 1.88 GeV
 - Provide control of horizontal emittance
- Repetition rate for transfer from synchrotron limited by damping time in storage ring

Single- and multi-bunch instability thresholds: Beam-beam tune shift limit:

Tolerance to parasitic beam-beam effects:

Beam-beam current limit:

Exact scaling subject to debate

Wigglers

• Wigglers

- 2.1 T peak field vs. 0.2 T max bending field
 - Peak field represents compromise between damping, energy spread, and total length
- Uniform over 9 cm horizontal aperture
 - Linearity requirements are driven by CESR pretzel operation with 20 mm amplitude orbit excursions
- Long period (40 cm) to minimize vertical cubic nonlinearity

 $\Delta Q_v \sim 0.1$ integer per wiggler

- 7.62 cm pole gap ⇒5 cm vertical beam aperture
- 1.3 m individual wiggler active length
- 12 wigglers in full complement
- 8-pole wigglers presently in use
 - Also have used 2 7-pole versions
 - Primary reason for 8-pole selection: better field quality for varying excitations
- 3kW/wiggler synchrotron radiation with $I_{beam} = 200 \text{ mA} @1.88 \text{ GeV}$

•Wiggler Cryogenic Performance ~1.3 W @ 4 K ~ 40 W @ 77 K

Further details: PAC03 Paper (D. Rice *etal*) http://accelconf.web.cern.ch/accelconf/p03/PAPERS/TOAB007.PDF WIGGLE05 talk (A. Temnykh) http://www.lnf.infn.it/conference/wiggle2005/talks/Temnyk.pdf

• Fabrication

- Largely in house to control costs and schedule
- Pipelined Process (3 wigglers at various stages of fabrication/assembly at the same time)
- Production Line
 - 1 wiggler every 3 weeks
 - Manpower
 - Sr. Technical & Supervisory: **5** FTE
 - Technical support: 13 FTE
- Parts and Outside Fabrication Costs:
 - ~\$80K per wiggler

Wiggler Quality Control

• Production Testing

- Vigilance during coil winding
- Warm flux test on each wound pole
 - Sensitive to turn-to-turn shorts/missing turns
 - Sensitive to O(0.1 mm) geometry errors in coil shapes (a1 problem see below)
- Frequent electrical insulation/vacuum leak checks
- Final cold operational test and field mapping
 - Precision Hall Probe measurement for point-by-point fields
 - Flip coil measurement for first integral of field
 - "Twisted" flip coil measurement for second integral of field
 - See A. Temnykh, WIGGLE05 presentation for detailed discussion
- No failures encountered after 1st unit
- One significant multipole issue encountered during production
 - Skew quad moment (a1)
 - Traced to variations in geometry of wound coils
 - Warm flux measurement and careful "shuffling" of poles ameliorated problem
 - See A. Temnykh, WIGGLE05 presentation for detailed discussion

Final Wiggler Layout

Full complement of 12 wigglers installed during summer 2004 shutdown

Wiggler Modeling

- Phase space mapping through wigglers required for simulation of dynamical effects
- Mapping is based on detailed 3D modeling using Vector Fields Opera

F VECTOR FIELDS

24.May/200211198-03

Field Measurement

Flip-coil measurement of field integrals

- Integrated vertical component $B_v(Gm)$
- ~15µrad/Gm @ 1.88 GeV

- Integrated horizontal component B_x (Gm)
- Linear horizontal dependence ↔ skew quad

Field Maps

- 3D field table from modeling
- Fit table with analytical form
- Analytic form of Hamiltonian
 - Symplectic integration
 - ➡ taylor map

$$B_{fit} = \sum_{n=1}^{N} B_n(x, y, s; C_n, k_{xn}, k_{yn}, k_{sn}, \phi_n)$$

$$B_n x = -C \frac{k_x}{k_y} \sin(k_x x) \sinh(k_y y) \cos(k_s s + \phi_s)$$

$$B_n y = C \cos(k_x x) \cosh(k_y y) \cos(k_s s + \phi_s)$$

$$B_n s = -C \frac{k_s}{k_y} \cos(k_x x) \sinh(k_y y) \sin(k_s s + \phi_s)$$
with $k_y^2 = k_x^2 + k_s^2$

Beam Simulations based on the BMAD package (D. Sagan): http://www.lns.cornell.edu/~dcs/bmad

Phase Space Mapping

August 16, 2005

CESR-c Wiggler Experience

Mark A. Palmer

- Beam-based probe of wiggler and model agreement
 - Bunch length and beam energy spread
 - Tune variation with wiggler field
 - Tune variation with beam position in wiggler
 - Tune variation with amplitude (octupole moment)
- Beam dynamics modeling and application also probes wiggler performance
- Provides full front-to-back check of local tools and hardware

Bunch Length and Beam Energy Spread

Streak camera measurement

$$\frac{\sigma_{E}}{E} = \frac{2\pi f_{S}}{\alpha c} \sigma_{Z}; f_{S} \simeq 39 kHz,$$

$$\alpha = 0.011, \sigma_z = 11.86mm$$

$$\Rightarrow \frac{\sigma_{E}}{E} = 8.62 \times 10^{-4}$$

Model prediction: $\frac{\sigma_{E}}{E} = 8.47 \times 10^{-4}$
(72% from wigglers)

A. Temnykh – WIGGLE05

Tune vs Wiggler Current

Tune variation with wiggler (14WA) current.

	Value	Error
dQh/dI (model)	-2.97e-5	6.7e-13
dQh/dI (measl)	3.5e-5	2.9e-5
dQv/dl (model)	0.00102	2.0e-11
dQv/dl (meas)	0.00115	1.67e-05

A. Temnykh – WIGGLE05

Tunes Versus Vertical Position in Wigglers

Tune variation with beam position in 19E cluster (3wigglers).

Vertical and horizontal tunes measured as a function of vertical orbit position in wigglers

$$df_{h,v} = 1kHz \implies dQ_{h,v} = 0.0025$$

Vertical and horizontal tune versus vertila beam position at three 8-pole wigglers cluster, VB 58. (ST, Aug 21 2003)

A. Temnykh – WIGGLE05

Tunes Versus Horizontal Position in Wigglers

Tune variation with beam position in 19E cluster (3wigglers).

Vertical and horizontal tunes measured as a function of horizontal orbit position in wigglers

$$df_{h,v} = 1kHz \implies dQ_{h,v} = 0.0025$$

Vertical and horizontal tune versus horizontal beam position at three 8-pole wigglers cluster, HB 70. (ST, Aug 21 2003)

A. Temnykh – WIGGLE05

Characterization of Wiggler Octupole Component

Vertical shaking, BMP 0W

12

Value

8.007

4.5137

0.61565

 $y = Ay^{*}cos((m0-m2)^{*}360^{*}Qy)$

Ay[mm]

m 2

Qy

Setup for measurement of tune variation with amplitude. Turn - by - turn beam position

V_n [mm]

-10

Tune tracker provides beam resonance shaking with stable amplitude horizontal/vertical plane.

A. Temnykh – WIGGLE05

August 16, 2005

turn #

20

16

Error

0.062

0.0030

0.0002

Characterization of Wiggler Octupole Component

Measured and calculated dependence of vertical/horizontal tune versus vertical/horizontal amplitude

A. Temnykh – WIGGLE05

August 16, 2005

- The CESR group has obtained substantial (*good*) experience with building and operating a set of 12 superconducting wigglers
- Agreement between model and machine performance of wigglers is quite good
- This experience and infrastructure is currently being applied to ILC DR issues (see talk by J. Urban)

• Fully characterized machine/wigglers and benchmarked tools

⇒ Confidence in new development!

Presentation has drawn heavily on contributions by :

Dave Rice A. (Sasha) Temnykh Jim Crittenden

Production Team G. Codner S. Chapman J. Crittenden R. Gallagher Y. He J. Kandaswamy V. Medjidzade A. Mikhailichenko N. Mistry T. Moore E. Nordberg D. Rice S. Richichi D. Rubin E. Smith K Smolenski A. Temnykh W. Trask

CESR Wiggler

CESR Design Parameters

Beam Energy [GeV]	1.55	1.88	2.5	5.3
Luminosity [+10 ³⁰]	150	300	500	1250
iվ [mA/bunch]	2.8	4.0	5.1	8.0
I_{beam} [mA/beam]	130	180	230	370
ξ _{y.}	0.035	0.04	0.04	0.06
፟ ፟፟፟፟፟፟	0.028	0.036	0.034	0.03
o ∈∕E₀ [×10³]	0.75	0.81	0.79	0.64
τ _{x,y} [msec]	69	55	52	22
B w [Tesla]	2.1	2.1	1.75	1.2
β _{χ.} * [cm]	1.0	1.0	1.0	1.8
ε _x [nm-rad]	230	220	215	220