Computation of Transfer Maps from Surface Data

Using Elliptical Cylinders

Objective

- To obtain an accurate representation of the wiggler field that is analytic and satisfies Maxwell equations exactly. We want a vector potential that is analytic and $\nabla \times \nabla \times \boldsymbol{A}=0$.
- Using a Hamiltonian expressed as a series of homogeneous polynomials

$$
K=-\sqrt{\frac{\left(p_{t}+q \phi\right)^{2}}{c^{2}}-\left(\vec{p}_{\perp}-q \vec{A}_{\perp}\right)^{2}}-q A_{z}=\sum_{\alpha=1}^{N} h_{\alpha}(z) K_{\alpha}\left(x, p_{x} y, p_{y}, \tau, p_{\tau}\right)
$$

- ...we compute the design orbit and the transfer map about the design orbit to some order. We obtain a factorized symplectic map for single-particle orbits through the wiggler

$$
M=R_{2} e^{: f_{3}:} e^{: f_{4}:} e^{: f_{5}:} e^{: f_{6}: \ldots}
$$

- Use B-V data to find an accurate series representation of interior vector potential through order N in (x, y) deviation from design orbit.

$$
A_{x}(x, y, z)=\sum_{k=1}^{N} a_{k}^{x}(z) P_{k}(x, y)
$$

Fitting Wiggler Data

Place an imaginary elliptic cylinder between pole faces, extending beyond the ends of the magnet far enough that the field at the ends is effectively zero.
-Data on regular Cartesian grid
4.8 cm in $\mathrm{x}, \mathrm{dx}=0.4 \mathrm{~cm}$

2.6 cm in $\mathrm{y}, \mathrm{dy}=0.2 \mathrm{~cm}$

480 cm in $\mathrm{z}, \mathrm{dz}=0.2 \mathrm{~cm}$
-Field components Bx, By, Bz in one quadrant given to a precision of 0.05G.
-Fitted onto elliptic cylindrical surface using bicubic interpolation to obtain the normal component.
-Compute the interior vector potential and all its desired derivatives.

Elliptic Coordinates

Defined by relations:
$x=f \cosh u \cos v$
$y=f \sinh u \sin v$
where f is the focal distance.
Letting $z=x+i y, w=u+i v$ we have

$$
z=\mathfrak{I}(w)=f \cosh w
$$

Jacobian:
$J(u, v)=\left|\mathfrak{I}^{\prime}(z)\right|=|f \sinh z|=f\left(\sinh ^{2} u+\sin ^{2} v\right)$
Laplacian:
$\nabla^{2}=\frac{1}{J(u, v)}\left(\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial}{\partial v^{2}}\right)+\frac{\partial^{2}}{\partial z^{2}}$

- Interested in fitting air-core magnets, so we can use scalar potential satisfying $\left(\nabla_{\perp}^{2}-k^{2}\right) \tilde{\psi}(u, v, k)=0$
- Search for product solutions in elliptic coordinates

The solutions for V are

Mathieu functions

$$
\begin{array}{lll}
c e_{m}(v, q) & \text { with } \lambda=\mathrm{a}_{\mathrm{m}}(\mathrm{q}), \longleftarrow & \text { even in } v \\
s e_{m}(v, q) & \text { with } \lambda=\mathrm{b}_{\mathrm{m}}(\mathrm{q}) . \longleftarrow & \text { odd in } v
\end{array}
$$

The associated solutions for U are

Modified Mathieu functions

$$
\begin{aligned}
& C e_{m}(u, q)=c e_{m}(i u, q), \\
& S e_{m}(u, q)=-i s e_{m}(i u, q) .
\end{aligned}
$$

For $\tilde{\Psi}(x, y, k)$ we make the Ansatz

$$
\tilde{\psi}(x, y, k)=\sum_{n=0}^{\infty}\left[\left(\frac{F_{n}(k)}{S e_{n}^{\prime}\left(u_{b}, k\right)}\right) S e_{n}(u, k) s e_{n}(v, k)+\left(\frac{G_{n}(k)}{C e_{n}^{\prime}\left(u_{b}, k\right)}\right) C e_{n}(u, k) c e_{n}(v, k)\right] .
$$

Boundary-Value Solution

- Normal component of field on bounding surface defines a Neumann problem with interior field determined by moment expansion on the boundary:

$$
B_{u}(v, k)=\partial_{u} \tilde{\psi}=\sum_{n=0}^{\infty} F_{n}(k) s e_{n}(v, k)+G_{n}(k) c e_{n}(v, k)
$$

- Moments $F_{n}(k), G_{n}(k)$ on boundary are integrated against a kernel that falls off rapidly with large k, minimizing the contribution of high-frequency noise.
- On-axis gradients are found that specify the field and its derivatives.
- Power series representation

$$
\begin{aligned}
& A_{[x x}=\sum_{m=1}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^{\prime}(m-1)!}{2^{2 l}!(l+m)!}\left\{\begin{array}{l}
x \\
y
\end{array}\right\}\left(x^{2}+y^{2}\right)\left[\operatorname{Re}(x+i y)^{m} C_{m, s}^{[2 l+1]}(z)-\operatorname{Im}(x+i y)^{m} C_{m, c}^{[2 l+1]}(z)\right] \\
& A_{z}=\sum_{m=1}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^{\prime}(2 l+m)(m-1)!}{2^{2 l} l!(l+m)!}\left(x^{2}+y^{2}\right)\left[-\operatorname{Re}(x+i y)^{m} C_{m, s}^{[2]]}(z)+\operatorname{Im}(x+i y)^{m} C_{m, c}^{[2]]}(z)\right]
\end{aligned}
$$

Dipole Field Test

-Simple field configuration in which scalar potential, field, elliptical moments, and onaxis gradients can be determined analytically.
-Tested for two different aspect ratios: 4:3 and 5:1.
Pole location: $d=4.7008 \mathrm{~cm}$
Pole strength: $g=0.3 T \mathrm{~cm}^{2}$
Semimajor axis: $1.543 \mathrm{~cm} / 4.0 \mathrm{~cm}$
Semiminor axis: $1.175 \mathrm{~cm} / 0.8 \mathrm{~cm}$
Boundary to pole: $3.526 \mathrm{~cm} / 3.9 \mathrm{~cm}$
Focal length: $\mathrm{f}=1.0 \mathrm{~cm} / 3.919 \mathrm{~cm}$
Bounding ellipse: $u=1.0 / 0.2027$

160 cm
Direct solution for interior scalar potential accurate to $3^{*} 10-10$: set by convergence/roundoff
Computation of on-axis gradients C1, C3, C5
accurate to $2 * 10-10$ before final Fourier transform accurate to $2.6 * 10-6$ after final Fourier transform

Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder

Fit to vertical field By at $x=0.4 \mathrm{~cm}, y=0.2 \mathrm{~cm}$.

Fit to the Proposed ILC Wiggler Field Using Elliptical Cylinder

5 GeV Reference Orbit Through CESR-c Modified Wiggler

Reference orbit through proposed ILC wiggler at 5 GeV

Ray trace for proposed ILC wiggler

Initial grid of spacing 5 mm in the xy plane.

+ initial values, x final values +.
Defocusing in x , focusing in y

Phase space trajectory of 5 GeV on-axis reference particle

REFERENCE ORBIT DATA

At entrance:

$$
x(m)=0.000000000000000 E+000
$$

can. momentum p_x $=0.000000000000000 \mathrm{E}+000$
mech. momentum p_x $=0.000000000000000 \mathrm{E}+000$
$y(m)=0.000000000000000 E+000$
mech. momentum $p _y=0.000000000000000 \mathrm{E}+000$
angle phi_x $(\mathrm{rad})=0.000000000000000 \mathrm{E}+000$
time $(s)=0.000000000000000 \mathrm{E}+000$
$p _t /(p 0 c)=-1.0000000052213336$

At exit:

$$
x(m)=-4.534523825505101 \mathrm{E}-005
$$

can. momentum p_x = 1.245592900543683E-007 mech. momentum p_x = 1.245592900543683E-007
$y(m)=0.000000000000000 E+000$
mech. momentum p_y $=0.000000000000000 \mathrm{E}+000$ angle phi_x $(\mathrm{rad})=1.245592900543687 \mathrm{E}-007$
time of flight $(\mathrm{s})=1.60112413288 \mathrm{E}-008$
p_t/(p0c) $=-1.0000000052213336$
Bending angle $(\mathrm{rad})=1.245592900543687 \mathrm{E}-007$
matrix for map is :

```
1.05726E+00 4.92276E+00 0.00000E+00 0.00000E+00 0.00000E+00 -5.43908E-05
2.73599E-02 1.07323E+00 0.00000E+00 0.00000E+00 0.00000E+00 -4.82684E-06
0.00000E+00 0.00000E+00 9.68425E-01 4.74837E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 -1.14609E-02 9.76409E-01 0.00000E+00 0.00000E+00
3.61510E-06 -3.46126E-05 0.00000E+00 0.00000E+00 1.00000E+00 9.87868E-05
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00
nonzero elements in generating polynomia\are :
f( 28)=f( 30 00 00 )=-0.86042425633623D-03
f(29)=f( 2100 00 )= 0.56419178301165D-01
f( 33)=f( 20 00 01 )=-0.76045220664105D-03
f(34)=f(1200 00 )=-0.25635788141484D+00
```


focusing

Currently through $f(923)$ - degree 6.

Advantages of Surface Fitting

- Uses functions with known (orthonormal) completeness properties and known (optimal) convergence properties.
- Maxwell equations are exactly satisfied. (Other procedures.)
- Error is globally controlled. The error must take its extrema on the boundary, where we have done a controlled fit.
- Insensitivity to errors due to Laplace kernel smoothing. Improves accuracy in higher derivatives. Insensitivity to noise improves with increased distance from the surface: advantage over circular fitting.
- Careful benchmarking.

