

Analytical Estimation of Dynamic Aperture Limited by Wigglers in a Storage Ring

J. GAO

Institute of High Energy Physics Chinese Academy of Sciences

Snowmass ILC workshop, August 14-27, 2005

Contents

Operation of Construction o

• Dynamic Apertures Limited by Wigglers in a Storage Ring

Application to TESLA damping ring

Conclusions

Dynamic Aperturs of Multipoles

Hamiltonian of a single multipole

$$H = \frac{p^2}{2} + \frac{K(s)}{2} \chi^2 + \frac{1}{m! B \rho} \frac{\partial^{m-1} B_z}{\partial \chi^{m-1}} \chi^m L_{k=-\infty} \overset{\infty}{\to} \delta(s^* - kL)$$

Eq.

Where L is the circumference of the storage ring, and s* is the place where the multipole locates (m=3 corresponds to a sextupole, for example).

I mportant Steps to Treat the Perturbed Hamiltonian

Using action-angle variables

Hamiltonian differential equations should be replaced by difference equations

Since under some conditions the Hamiltonian don't have even numerical solutions

Standard Map

Near the nonlinear resonance, simplify the difference equations to the form of **STANDARD MAP**

$$\overline{I} = I + K_0 \sin \theta$$
$$\overline{\theta} = \theta + \overline{I}$$

Some explanations

Definition of TWIST MAP

$$x = x + Kf(\theta)$$

$$\overline{\theta} = \theta + g(\overline{x}) \pmod{1}$$

where $f(\theta + 1) = f(\theta)$ $\frac{dg(x)}{dx} \neq 0, \forall x$

Ι

Some explanations

Classification of various orbits in a Twist Map, Standard Map is a special case of a Twist Map.

Stochastic motions

For Standard Map, *when* $K_0 \ge 0.97164$ global stochastic motion starts. Statistical descriptions of the nonlinear chaotic motions of particles are subjects of research nowadays. As a preliminary method, one can resort to Fokker-Planck equation .

m=4 Octupole as an example

Step 1) Let m=4 in Eq. 1, and use canonical variables obtained from the unperturbed problem.

Step 2) Integrate the Hamiltonian differential equation over a natural periodicity of L, the circumference of the ring

m=4 Octupole as an example

Step 3)

$$\overline{J_1} = J_1 + A \sin 4\Phi_1$$

$$\overline{\Phi_1} = \Phi_1 + B \overline{J_1}$$

$$A = \left(\frac{J_1 \beta_x^2 (s_{m=4})}{2}\right) \left(\frac{b_3 L}{\rho}\right)$$

$$B = 2\beta_x^2 (s_{m=4}) \left(\frac{b_3 L}{\rho}\right)$$

 $K_0 = 4AB$

m=4 Octupole as an example

Step 4)
$$K_0 = 4 AB < 1(0.97164)$$

$$J_1 < \left(\frac{1}{2\beta_x^2(s_{m=4})}\right) \left(\frac{\rho}{\mid b_3 \mid L}\right)$$

One gets finally

$$A_{dyna,oct,x} = (2J_1\beta_x(s))^{1/2} = \frac{\beta_x^{1/2}(s)}{\beta_x(s_{m=4})} 2\beta_x^{2}(s_{m=4}) \left(\frac{\rho}{|b_3|L}\right)^{1/2}$$

中国科学党高能物現研究所 Institute of High Energy Physics.CAS Super-ACO

Lattice

NUX

5.

4.8

1st .00E+00

saco-full - no sextuple and octupole

saco-full - no sextuple and octupole

x-xp phase plane

Pla 科学党為作為現み党所 Institute of High Energy Physics.CAS 2D dynamic apertures of a Sextupole

Simulation result

Analytical result

Wiggler

I deal wiggler magnetic fields

$$B_{x} = \frac{k_{x}}{k_{y}} B_{0} \sinh(k_{x}x) \sinh(k_{y}y) \cos(ks)$$

$$B_y = B_0 \cosh(k_x x) \cosh(k_y y) \cos(ks)$$

$$B_z = -\frac{k}{k_y} B_0 \cosh(k_x x) \sinh(k_y y) \sin(ks)$$

$$k \frac{2}{x} + k \frac{2}{y} = k^2 = \left(\frac{2\pi}{\lambda_w}\right)$$

Hamiltonian describing particle's motion

$$H_{w} = \frac{1}{2} (p_{z}^{2} + (p_{x} - A_{x} \sin(ks))^{2} + (p_{y} - A_{y} \sin(ks))^{2})$$

where

$$A_x = \frac{1}{\rho_w k} \cosh(k_x x)) \cosh(k_y y))$$

$$A_{y} = -\frac{1}{\rho_{w}k} \sinh(k_{x}x))\sinh(k_{y}y))\frac{k_{x}}{k_{y}}$$

Particle's transverse motion after averaging over one wiggler period

 $\frac{d^2 x}{ds^2} =$ $-\frac{k_x^2}{2\rho_x^2k^2}(x+\frac{2}{3}k_x^2x^3+k^2xy^2)$

 $\frac{d^2 y}{ds^2} =$ $-\frac{k_y^2}{2\rho_w^2k^2}\left(y+\frac{2}{3}k_y^2y^3+yx^2\frac{k_x^2k^2}{k_w^2}\right)$

In the following we consider plane wiggler with *Kx*=0

• After comparing Eq. 4 with Eq. 1 one
gets
$$\frac{b}{\rho} \frac{3}{\rho} L = \frac{k}{3} \frac{2}{\rho} \frac{\lambda}{w}$$

Using Eq. 2 one gets one cell wiggler limited dynamic aperture

$$A_{1,y}(s) = \frac{\sqrt{\beta_y(s)}}{\beta_y(s_w)} \left(\frac{3\rho_w^2}{k_y^2\lambda_w}\right)^{1/2}$$

A full wiggler

Using Eq. 3 one finds dynamic aperture for a tull wiggler

$$\frac{1}{A_{N_{w,y}}^{2}(s)} = \sum_{i=1}^{N_{w}} \frac{1}{A_{i,y}^{2}} = \sum_{i=1}^{N_{w}} \left(\frac{k_{y}^{2}}{3\rho_{w}^{2}\beta_{y}(s)}\right) \beta_{y}^{2}(s_{i,w}) \frac{\lambda_{w}}{N_{w}}$$

or approximately $A_{N_{W,y}}(s) = \sqrt{\frac{3\beta_y(s)}{\beta_{y,m}^2}} \frac{\rho_w}{k_y \sqrt{L_w}}$

where $\beta_{y,m}$ the beta function in the middle of the wiggler

Many wigglers (M)

$$A_{total,y}(s) = \frac{1}{\sqrt{\frac{1}{A_{y}^{2}(s)} + \sum_{j=1}^{M} \frac{1}{A_{j,w,y}^{2}(s)}}}$$

Dynamic aperture in horizontal plane

Adyna, wigl,
$$x = \sqrt{\frac{\beta_{y,m}}{\beta_{x,m}}} \left(A^2_{dyna,wigl,y} - y^2 \right)$$

Numerical example: Super-ACO Super-ACO lattice with wiggler

switched off

saco-full lattice

Super-ACO (one wiggler) $\rho_w(m)=2.7$ $A_{y,n}(m)=0.017$ $A_{y,a}(m)=0.019$ $\beta_{y,m}(m)=13$ $l_w(m)=0.17584$ $L_w(m)=3.5168$

saco-full lattice

0.02

0.0

D. D4

0.06

Maco-full lattice

-.D6

-. D4

- . D2

-. D6

Super-ACO (one wiggler)

$$\rho_w(m)=4$$
 $\beta_{y,m}(m)$

$$y_{y,m}(m) = 9.5$$

$$L_w(m)=3.5168$$

 $l_w(m)=0.08792$ $A_{y,n}(m)=0.016$ $A_{y,a}(m)=0.017$ $l_w(m)=0.17584$ $A_{y,n}(m)=0.033$ $A_{y,a}(m)=0.034$ $l_w(m)=0.35168$ $A_{y,n}(m)=0.067$ $A_{y,a}(m)=0.067$

saco-full lattice

Application to TESLA Damping Ring

$$\begin{split} E = 5 GeV \quad Bo = 1.68T \quad \lambda_w = 0.4m \\ N_w = 12 \quad \beta_{y,1} = 9m \quad \text{(at the entrance of the wiggler)} \\ \beta_{y,2} = 15m \quad \text{(at the exit of the wiggler)} \\ The total number of wigglers in the damping ring is 45. \end{split}$$

The vertical dynamic aperture due to 45 wiggler is $A_{total,y} = 2.1cm$

中国科学院高能物理研究所 Institute of High Energy Physics.CAS

Conclusions

1) Analytical formulae for the dynamic apertures limited by multipoles in general in a storage ring are derived.

- 2) Analytical formulae for the dynamic apertures limited by wigglers in a storage ring are derived.
- 3) Both sets of formulae are checked with numerical simulation results.

4) These analytical formulae are useful both for experimentalists and theorists in any sense.

References

- 1) R.Z. Sagdeev, D.A. Usikov, and G.M. Zaslavsky, "Nonlinear Physics, from the pendulum to turbulence and chaos", Harwood Academic Publishers, 1988.
- 2) R. Balescu, "Statistical dynamics, matter our of equilibrium", Imperial College Press, 1997.
- 3) J. Gao, "Analytical estimation on the dynamic apertures of circular accelerators", NIM-A451 (2000), p. 545.
- 4) J. Gao, "Analytical estimation of dynamic apertures limited by the wigglers in storage rings, NIM-A516 (2004), p. 243.