POSITRON COLLECTION IN LINEAR COLLIDER

Yuri K. Batygin

SLAC, Stanford, CA 94309

Snowmass, Colorado, August 16, 2005

Conventional positron source layout.

Polarized positron injector layout.

GEANT3 simulation of shower development generated by 6 GeV electron in 4.5RL 77W-Re target: (blue) photons, (red) electrons and positrons.

EGS generated positron distribution from 6 GeV electron beam with $\sigma_x = \sigma_y = 2mm$, $\sigma_t = 1.5$ ps hitting W-23Re 4.5RL target (by John Sheppard).

Yield(5 GeV) = Capture x Yield(target)

ADIABATIC TRANSFORMATION OF BEAM PHASE SPACE

(Blue) transverse beam emittance at the target. (Blue) (Red) emittance area of 0.03π m rad. (Red)

(Blue) transverse beam emittance at 250 MeV. (Red) emittance area of 0.03π m rad.

Magnetic field profile in Adiabatic Matching Device: $B_z = B_{max}/(1 + gz)$.

Acceptance of solenoid

Equation of motion:

$$\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}t^2} + \omega_\mathrm{L}^2 \mathbf{r} = 0$$

 $\frac{R_{max}^2}{\omega_L}$

βc

Э

where Larmor frequency:

$$\omega_{\rm L} = eB/(2m\gamma)$$

First integral:

$$\left(\frac{\mathrm{d}r}{\mathrm{d}z}\right)^2 + \left(\frac{\omega_{\mathrm{L}}}{\beta c}\right)^2 r^2 = \left(\frac{\omega_{\mathrm{L}}}{\beta c}\right)^2 R_{\mathrm{max}}^2$$

Acceptance:

Normalized acceptance:

$$\varepsilon = \beta \gamma \exists = \frac{eB}{2mc} R_{max}^2$$

Field distribution $B_{max} = 6$ Tesla, $B_{fin} = 0.5$ Tesla, g = 0.078 cm⁻¹.

Particle distribution after adiabatic matching device with $g = 0.078 \text{ cm}^{-1}$.

Field distribution $B_{max} = 6Tesla$, $B_{fin} = 0.5 Tesla$, $g = 0.78 cm^{-1}$.

Beam distribution after adiabatic matching device with $g = 0.78 \text{ cm}^{-1}$.

Positron capture as a function of adiabatic parameter g.

Immersed Target vs Shielded Target

Field profile and acceptance of AMD, (blue): positrons generated at the target, (red) target positrons transmitted through AMD.

Effective emittance of the beam immersed in magnetic field

$$\varepsilon = \sqrt{\varepsilon_0^2 + (\frac{e B_t R_t^2}{2 m c})^2}$$

 ε_0 - beam emittance B_t- field at the target R_t- beam radius at the target

For
$$\varepsilon_0 = 0.1 \pi$$
 m rad, $B_t = 6$ Tesla, $R_t = 5$ mm $\varepsilon = 1.1$

$$\varepsilon = 1.1 \varepsilon_0$$

Acceleration of positrons

Distribution of accelerated positrons in phase space (red): area of 0.01 π m rad.

Positron yield at 5 GeV as a function of transverse beam emittance for accelerating gradient E = 12 MeV/m, (blue) $\Delta E/E \le 1\%$, (red) $\Delta E/E \le 2\%$.

Positron capture as a function of accelerating gradient and RF wavelength.

Longitudinal mapping:

$$\sin \varphi = \sin \varphi_{o} - \frac{2\pi \operatorname{mc}^{2}}{e \operatorname{E} \lambda} \left(\frac{\gamma_{o}}{\beta_{w}} - \sqrt{\gamma_{o}^{2} - 1 - p_{t}^{2}} \right)$$
$$\gamma = \gamma_{o} + \frac{e \operatorname{E}}{\operatorname{mc}^{2}} \operatorname{L} \cos \varphi$$

Positron yield as a function of transverse electron bunch size (bunch length $\sigma_t = 1$ ps, target Hg, 4RL, E = 25 MV/m).

Positron yield as a function of electron bunch length (σ_x =1.6 mm, target W-Re 4.5RL, E = 25 MV/m).

Magnetic compression for positron collector

Chicane parameters:

Beam energy	250MeV
Beam energy spread	20%
Bending radius	600cm
Bending angle	13°
Bending field	0.14 Tesla

Transverse particle trajectories in chicane.

Longitudinal positron distribution before and after compression.

Particle distribution at 5 GeV.

Positron yield with and without compression.

	No	With compression,	With compression,
	compression	E=12 MV/m	E=50 MV/m
Positron yield			
within	0.982	1.312	1.505
$\varepsilon_{\rm x} = \varepsilon_{\rm y} \le 0.03 \ \pi \ {\rm m}$			
rad, $\Delta E/E \le 1\%$			

Parameters for conventional positron source collector

Target

Material Length

W23Re 4.5 RL

Eletron Beam

Energy	6 GeV
Transverse size, $\sigma_x = \sigma_y$	1.52 mm
Longitudinal size, σ_t	1.55 ps

Adiabatic Matching Device

Field profile	$B_z = B_{max}/(1 + gz)$
Field at the target, B _{ma}	x 6 Tesla
Field coefficient, g	0.6 cm^{-1}
Length of AMD	18 cm

Pre-accelerator

Wavelength	23 cm
Energy	0250 MeV
Focusing field	0.5 Tesla
Accelerating gradient	12 MeV/m

Chicane

Beam energy	250MeV
Beam energy spread	20%
Bending radius	600 cm
Bending angle	13°
Bending field	0.14 Tesla

Accelerator

Wavelength	23 cm
Energy	5 GeV
Accelerating gradient	12 MeV/m

POLARIZED POSITRON CAPTURE

Initial distribution of positrons generated by 11.7 MeV γ – flux.

(Blue) distribution of positrons at 1.9 GeV obtained from 10.7 MeV γ -flux, (red) emittance area of 0.03 π m rad and $\Delta E/E=2\%$.

(Blue) distribution of positrons at 1.9 GeV obtained from 10.7 MeV γ -flux at RF phase $\varphi = -11.5^{\circ}$, (red) emittance area of 0.03 π m rad and $\Delta E/E=2\%$.

(b)

Positron capture at 5 GeV as a function of beam emittance: (blue) $\Delta E/E < 1\%$, (red) $\Delta E/E < 2\%$,

(a) particles are on crest, beam polarization $\langle P_z \rangle = 0.51...0.56$ (b) particles are off-crest, beam polarization $\langle P_z \rangle = 0.49...0.53$

SUMMARY

- 1. Two schemes for positron production were considered:
 - conventional scheme, utilizing 6 GeV electron beam interacting with high-Z positron production target,
 - polarized positron production scheme based on polarized photons generated in helical undulator.
- 2. In electron-based source positron phase space density at the target has a maximum for target length of 4.5....5.5 RL.
- 3. Target immersed in magnetic field provides 40% more transmitted positrons than shielded target.
- 4. Positron transmission through adiabatic matching device has a maximum for the value of adiabatic parameter g = 0.6 cm⁻¹.
- 5. The value of positron capture saturates for accelerating gradients E > 25 MV/m.
- 6. Positron yield for conventional source can reach the values of Y = 1.0...1.3 for $\varepsilon_x = \varepsilon_y \le 0.03 \pi \text{ m rad}, \Delta E/E \le 1...2\%$

- Application of magnetic bunch compression results in 30% 40% increase in positron capture.
- 8. The value of positron capture for undulator-based source is 3-4 larger than that of electron-based source because of better positron beam emittance after target.
- 9. Additional optimization of collector scheme might be done with respect to:
 - target material and thickness
 - incoming electron/photon beam sizes
 - photon beam energy
 - adiabatic matching magnetic field profile
 - accelerating gradient
 - deceleration of positrons
 - magnetic bunch compression.