

STUDY OF MAIN LINAC SINGLE BUNCH EMITTANCE PRSERVATION IN USCOIDLC DESIGN (500 GeV C.M.E.)

Kirti Ranjan Fermilab and University of Delhi, India &

Nikolay Solyak and Shekhar Mishra Fermi National Accelerator Laboratory

A Peter Tenenbaum Stanford Linear Accelerator Center

KIRTI RANJAN

2nd ILC Accelerator Workshop Snowmass, Colorado Aug.14-27, 2005

2nd ILC Accelerator Workshop, Snowmass

Aug.14 – 27, 2005

SINGLE BUNCH EMITTANCE DILUTION SIMULATION **Comparison of Lattice Configuration** 1:1 vs. Dispersion **Studies Free Steering** Nikolay Solyak's talk Present talk

OVERVIEW

GOALS OF THE PRESENT TALK

> To study single-bunch emittance dilution in USColdLC Main Linac

To compare the emittance dilution performance of two different steering algorithms : "1:1" and "Dispersion Free Steering" under nominal conditions

To compare the sensitivity of the steering algorithms for conditions different from the nominal

- USColdLC Main Linac Design
- Beam Based Alignments
 - ⇒ One-to-One (1:1) Steering
 - ⇒ Dispersion Free Steering
- MATLIAR Main Linac Simulation
- Results

KIRTI RANJAN

Conclusions / Plans

USColdLC Main Linac Design

- ⇒ Linac Cryogenic system is divided into Cryomodules(CM), with **12 RF structures / CM**
- ⇒ 1 Quad / 2CM : Superconducting Quads in alternate CM, 330 Quads (165F,165D)
- \Rightarrow Magnet Optics : FODO "constant beta" lattice, with β phase advance of **60**⁰ in each plane
- ⇒ Each quad has a Cavity style BPM and a Vertical Corrector magnet; horizontally focusing quads also have a nearby Horizontal Corrector magnet.

(similar to the 1st half of TESLA TDR main Linac)

Main Linac Parameters

- ⇒ ~11.0 km length
- ⇒ 9 Cell structures at 1.3 GHz and 12 structures per cryostat; Total structures : 7920
- ⇒ Loaded Gradient : **30 MV/m** (Original: 28 MV/m; *TESLA TDR: 23.5 MV/m*)
- ⇒ Injection energy = 5.0 GeV & Initial Energy spread = 2.5 %
- ⇒ Extracted beam energy = **250 GeV** (500 GeV CM)

Beam Conditions

- ⇒ Bunch Charge: 2.0 x 10¹⁰ particles/bunch
- \Rightarrow Bunch length = **300** μ m
- ⇒ Normalized injection emittance:
 - γε_Y = 20 nm-rad

Aug.14 – 27. 2005

2nd ILC Accelerator Workshop, Snowmass

ab initio (Nominal) Installation Conditions

Tolerance	Vertical (y) plane	
BPM Offset w.r.t. Cryostat	300 µm	
Quad offset w.r.t. Cryostat	300 µm	
Quad Rotation w.r.t. Cryostat	300 µrad 🔨	
Structure Offset w.r.t. Cryostat	300 µm	
Cryostat Offset w.r.t. Survey Line	200 µm	Not mentioned in
Structure Pitch w.r.t. Cryostat	300 µrad	TESLA TDR
Cryostat Pitch w.r.t. Survey Line	20 µrad	
BPM Resolution	1.0 µm	-10 μm in TDR

- > BPM transverse position is fixed, and the BPM offset is w.r.t. Cryostat
- Only Single bunch used
- No Ground Motion and Feedback
- Steering is performed using Dipole Correctors

ALIGNMENT & STEERING ALGORITHMS

Beam line elements are needed to be aligned with beam-based measurements

Considered here

"Beam Based Alignments (BBA)" refer to the techniques which provide

information on beamline elements using measurements with the beam

- ⇒ "One-to-One" Correction
- ⇒ Dispersion Free Steering
- ⇒ Ballistic Alignment
- ⇒ Kubo's method and possibly others....

Quad Shunting: Measure beam kick vs. quad strength to determine BPM-to-Quad offset (routinely done)

> In USColdLC, it is not assumed that all quads would be shunted

- ⇒ Quads are Superconducting and shunting might take a very long time
- No experimental basis for estimating the stability of the Magnetic center as a function of excitation current in SC magnets
- ⇒ In Launch region (1st 7 Quads), we assume that offsets would be measured and corrected with greater accuracy (~30 µm)

1:1 Steering

Every linac quad contains a cavity Q-BPM (with fixed transverse position)

Quad alignment – How to do?

 $\ensuremath{^{\ensuremath{\mathcal{T}}}}$ Find a set of BPM Readings for which beam should pass through the exact

center of every quad (zero the BPMs)

 \odot Use the correctors to Steer the beam

One-to-One alignment generates *dispersion* which contributes to emittance dilution and is sensitive to the BPM-to-Quad offsets

Dispersion Free Steering (DFS)

- DFS is a technique that aims to directly measure and correct dispersion in a beamline (proposed by Raubenheimer/Ruth, NIMA302, 191-208, 1991)
- General principle:
 - ⇒ Measure dispersion (via mismatching the beam energy to the lattice)
 - ⇒ Calculate correction needed to zero dispersion
 - ⇒ Apply the correction

Successful in rings (LEP, PEP, others) but less successful at SLC (Two-beam DFS achieved better results)

(Note: SLC varied magnet strengths (center motion?), others varied beam energy)

LIAR (LInear Accelerator Research Code)

- ⇒ General tool to study beam dynamics
- ⇒ Simulate regions with accelerator structures
- ⇒ Includes wakefield, dispersive and chromatic emittance dilution
- ⇒ Includes diagnostic and correction devices, including BPMs, RF pickups, dipole correctors, magnet movers, beam-based feedbacks etc
- MATLAB drives the whole package allowing fast development of correction and feedback algorithms
- CPU Intensive: Dedicated Processors for the purpose

Launch Region Steering (can not be aligned using DFS)

⇒ Emittance growth is very sensitive to the element alignment in this region, due to low beam energy and large energy spread

⇒ First, all RF structures in the launch region are switched OFF to eliminate RF kicks from pitched structures / cryostats

⇒ Beam is then transported through the Launch and BPM readings are extracted => estimation of Quad offsets w.r.t. survey Line

⇒ Corrector settings are then computed which ideally would result in a straight trajectory of the beam through the launch region

⇒ The orbit after steering the corrector magnets constitutes a reference or "gold" orbit for the launch

⇒ The RF units are then restored and the orbit is re-steered to the Gold Orbit. (This cancels the effect of RF kicks in the launch region)

STEERING ALGORITHM : ONE-to-ONE vs. DFS

1:1

Divide linac into segments of ~50 quads in each segment:

- Read all Q-BPMs in a single pulse
- Compute set of corrector readings and apply the correction
 - Constraint minimize RMS of the BPM readings
- Iterate few times before going to the next segment.
- Performed for 100 Seeds

KIRTI RANJAN

DFS

Divide linac into segments of ~40quads

- > Two orbits are measured
- Vary energy by switching off structures in front of a segment (no variation within segment)
- Measure change in orbit (fit out incoming orbit change from RF switch-off)
- > Apply correction
 - ⇒ Constraint simultaneously minimize dispersion and RMS of the BPM readings (weight ratio: $\sqrt{2}$: 300)
- Iterate twice before going to the next segment
- Performed for 100 Seeds

FOR USColdLC NOMINAL CONDITIONS

Gradient : 30 MV/ m; No BNS Energy Spread ; 100 seeds

Projected Emittance Dilution = Emittance (Exit) – Emittance (Entrance)

FOR USColdLC NOMINAL CONDITIONS

Average Normalized Emittance Growth (nm) vs. s (m)

Wakes include only Cavity and CM offsets; Dispersion includes Quad / BPM Offsets & Cavity / CM pitches

Sominal >Wakes+Dispersion+Quad roll (Why?- wakefields causing systematic errors ?)

Effect of GRADIENT

Same wakefields used for all the gradients!

DFS is almost independent of the change in gradient whereas for 1:1, emittance dilution decreases with increasing gradient

Aug.14 – 27. 2005

KIRTI RANJAN

2nd ILC Accelerator Workshop, Snowmass

Aug.14 – 27. 2005

28 MV / m Gradient ; w/ BNS Energy Spread; Nominal misalignments

New Wakefield calculations from Zagorodnov & Weiland 2003

40 Av. Normalized Emittance (nm) DFS 38 36 34 32 OLD Wake Field 30 28 New Wake Field 26 24 220 50 100 150 200 250 300 350 400 **BPM**

Average Emittance Dilution in the BPMs

SENSITIVITY STUDIES 28 MV/m Lattice w/ Autophasing

EFFECT OF QUAD OFFSETS / QUAD ROLL VARIATION

Keeping all other misalignments at Nominal Values and varied only the Quad offsets / Quad roll

- Emittance dilution increases slowly with increase in Quad Offsets
- DFS: Just under the budget for 2x nominal values

KIRTI

- DFS: Emittance dilution increases more rapidly with increase in Quad Roll
- DFS: Goes Over the budget even for 1.5x nominal values

EFFECT OF BPM OFFSETS / RESOLUTION VARIATION

- > Advantage of DFS: Emittance dilution for 1:1 increases very sharply with BPM offsets
- DFS: Emittance dilution is almost independent of BPM offset
- DFS: Remains within the budget even for 5x nominal
- Emittance dilution for 1:1 is almost independent of the BPM resolution
- DFS: Emittance dilution is sensitive to BPM resolution
- DFS: Goes Over the budget even for 5x nominal values

EFFECT OF STRUCTURE OFFSET / PITCH VARIATION

- > Emittance dilution for 1:1 is almost independent of the structure offset
- > DFS: Emittance dilution grows slowly with structure offsets
- > DFS: Goes Over the budget for 2.0x nominal values
- DFS: Emittance dilution is sensitive to Cavity pitch
- DFS: Goes Over the budget even for 1.5x nominal values

EFFECT OF CRYOMODULE OFFSET/ PITCH VARIATION

- DFS and 1:1: Emittance dilution grows sharply with CM offset
- DFS: Goes Over the budget even for 1.5x nominal values
- DFS and 1:1: Emittance dilution is almost independent of the CM pitch
- DFS: Remains within the budget for 3x nominal

30 MV / m; No BNS Energy Spread; 1Q/2CM Lattice

300 um: 8.956e+002 DFS and 1:1: Emittance dilution is very sensitive to the Launch BPM offsets \succ

 $1.484e \pm 002$

Average Normalized Emittance Growth (nm) vs. s (m)

30 MV / m; No BNS **Energy Spread; 1Q/2CM** Lattice

2nd ILC Accelerator Workshop, Snowmass

SUMMARY / PLAN

- Normalized vertical emittance growth (Single bunch) in Main Linac for 500 GeV C.M. USColdLC machine is simulated using MATLIAR
- © DFS algorithm provides significantly better results than One-to-One
- Important considerations for DFS algorithm
 - $\ensuremath{\mathfrak{S}}$ Spike in the launch region is not understood

© Average emittance dilution w/ new wake fields and w/o BNS energy spread for 30 MV/m Gradient is within the dilution budget for the nominal misalignments (6.9 nm) \odot Emittance dilution remains within the budget w/ 0.5 sigma beam-beam Jitter (~9.2 nm) but inclusion of quad jitter of 0.5 µm makes it go beyond the budget (~13 nm) \odot 90% emittance dilution is beyond the dilution budget

- Important tolerances to meet
 - ⇒ Structure Pitch; CM offset; Quad roll (within the nominal tolerances)
 - \Rightarrow BPM resolution (for 10 $\mu m:$ 6.9 nm \rightarrow 13.9 nm)
 - ⇒ Quad / beam-beam Jitter
 - ⇒ rather insensitive to Quad / BPM offsets; structure offset and CM pitch
- \Im Launch BPM offsets are needed to be ~ 30 μ m or less.

PLAN

- Include Ground Motion; Include bumps
- Comparison w/ Other Alignment techniques
- Effect of earth curvature
- Bad seeds study

KIRTI RANJAN

.001.^ u\$0N=1 z00BR1 1..=". ;s<''' NRX*=-> Z06^<X^ *B85*^' 089**' 089**' 18880*U1=*'' \$8006R^vu1 FRHZugn-' ;BRHv n\$U^-;BRHv n\$U^-;BRHv n\$U^-;BRHv n\$U^iOnv 01.' cOgn rs.' aUU' u1 `RO-=.*[-] ;COgn rs.' aUU' u1 `RO-...'

Aug.14 – 27. 2005

Further Studies related with DFS Implementation

30 MV/m, USColdLC 1Q/2CM lattice ; Nominal Misalignments

BACK UP – 2

results comparable results) KIRTI RANJAN 2nd ILC Accelerator Workshop, Snowmass Aug.14 –

KIRTI RANJAN

Varying No. of DFS iterations only

Varying No. of 1:1 iterations only

Workshop, Snowmass

2nd ILC Accelerator

Aug.14 – 27. 2005

Varying DFS energy only; Max. relative energy change and Max. absolute energy change

Varying DFS overlap only;

⇒ 1Q/2CM; 30 MV/m; No Autophasing considered; Nominal Misalignment conditions

	Mean dilution (nm)		90% (nm)	
	1:1	DFS	1:1	DFS
Nominal Inj. Energy = 5 GeV; espread = 125 MeV	471±38	6.9±0.4	940	13.1
Nominal Inj. Energy =13.5 GeV; espread 150 MeV	496±40	5.2±0.3	992	10.0
Nominal Inj. Energy = 13.5 GeV; espread 190 MeV	782±66	5.9±0.4	1657	11.0
Nominal Inj. Energy =13.5 GeV; espread 230 MeV	1179±104	7.0±0.4	2590	12.9

2nd ILC Accelerator Workshop, Snowmass

KIRTI RANJAN

Aug.14 – 27. 2005